博碩士論文 101224023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:18.223.172.180
姓名 沈育年(Yu-lien Shen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 探討阿拉伯芥中DEAD-box RNA 7解旋酶之功能
(Functional characterization of DEAD-box RNA helicase 7, AtRH7, in Arabidopsis)
相關論文
★ 水稻CAF1基因之功能分析-水稻CAF1基因的選殖、定性及表現★ 水稻OsDEADl-1基因的功能性探討
★ 利用水稻細胞之懸浮培養建立蛋白質高效率分泌系統★ 水稻CCR4基因之功能分析- 水稻CCR4基因的選殖、定性及表現
★ 阿拉伯芥 AtMYBS 基因功能性探討★ 水稻OsMYBS2基因的功能性分析
★ 水稻CCR4基因的功能分析- 繁衍大量表現和靜默表現的基因轉殖水稻★ 水稻OsVALs基因的功能性分析- 水稻OsVALs基因的選殖、定性及表現
★ 分析水稻T-DNA插入突變株: M0022150, M0023563, M0023580, M0037352及M0032079★ 以水稻懸浮培養細胞蛋白質生產系統生產mGMCSF
★ 建立表現耐熱澱粉普魯南糖酶基因之轉植甘藷★ 阿拉伯芥AtMYBSs基因參與在糖訊息及離層酸訊息傳遞之研究
★ I. II.★ 探討αAmy3、OsCIN1與Os33KD信號肽在水稻懸浮培養細胞中的功能及特性
★ 水稻CAF1基因在水稻懸浮培養細胞之研究★ 探討阿拉伯芥兩個MYB-related轉錄因子在糖訊息傳遞中所扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在阿拉伯芥中DEAD-box RNA解旋酶依其功能及胺酸序列組成一個蛋白質家族,每個解璇酶蛋白質在RNA代謝過程中扮演著不同的功能,例如: 核醣體生合成、mRNA剪輯、RNA運輸、mRNA轉譯和RNA降解。於此,我們進一步分析一個在阿拉伯芥中被命名為AtRH7/PRH75 RNA解旋酶,首先AtRH7/ PRH75 RNA解旋酶這個基因持續表現於各部位組織,特別是在細胞分化旺盛的組織,同時AtRH7基因亦受到冷逆境所誘導大量表現。在T-DNA突變AtRH7基因的轉植株atrh7-2和atrh7-3具有與突變在核醣體蛋白質相關基因所造成的生長素相關發育(Auxin-relative development)缺陷的相同外表型,此外表型在冷逆境中更為嚴重。然而atrh7的突變株對冷逆境具有不耐受性,原因可能來自於降低CBF1、CBF2和CBF3表現量。在我們的進一步發現,未加工的18S rRNA前驅物在突變株中大量的累積,同時藉由cRT-PCR的實驗發現,其前驅物的累積主要是因為在A2位置剪裁上的缺失所造成的,進一步影響atrh7突變株對一些抑致核醣體小單元的抗生素產生不敏感的外表型,也因此推測AtRH7可能也參與在核醣體的組合過程當中。根據以上的結果,我們的研究表示AtRH7參與rRNA的生合成中A2位置的加工過程及核醣體組合並且在阿拉伯芥適應冷逆境的環境的過程中扮演著很重要的角色。
摘要(英) DEAD box RNA helicases belong to a protein family that plays specific roles in various RNA metabolism processes, including ribosome biogenesis, mRNA splicing, RNA export, mRNA translation, and RNA decay. This study investigated a DEAD box RNA helicase, AtRH7/PRH75, in Arabidopsis. The AtRH7/PRH75 expression was ubiquitous, was activated in the cell-dividing region, and was induced by cold stress. The phenotypes of 2 allelic AtRH7/PRH75-knockout mutants, atrh7-2 and atrh7-3, resembled the auxin-related developmental defects exhibited in several ribosomal protein mutants and were more severe under cold stress. The atrh7 mutants exhibited decreased CBF1, CBF2, and CBF3 expression, which could be responsible for the subsequent cold intolerance; they also exhibited unprocessed 18S pre-rRNA accumulation. By a circular RT-PCR analysis displayed the accumulated 18S pre-rRNA, indicating that rRNA processing ceased at the A2 site. The atrh7 mutants were hyposensitive to the antibiotics that target to ribosomal small subunits, suggesting that AtRH7 was also involved in ribosome assembly. Taken together, our studies indicate that the AtRH7 participates in A2 site processing of rRNA biogenesis and ribosome assembling, and involves in plant development and cold stress tolerance in Arabidopsis.
關鍵字(中) ★ 死盒RNA解旋酶
★ 阿拉伯芥RNA解旋酶7號
★ 核醣體RNA生合成
關鍵字(英) ★ DEAD-box RNA helicase
★ AtRH7
★ rRNA biogenesis
論文目次 Table of Content
中文摘要 I
Abstract II
Table of Content IV
Table List VI
Figure List VII
Introduction 1
Materials and Methods 5
Plant materials and growth conditions 5
Quantitative RT-PCR 5
Circular RT-PCR 6
Primers 7
Plasmid constructions 7
Transformation of plants 7
Characterization of the atrh7-1, atrh7-2, and atrh7-3 alleles and segregation analysis 8
Siliques and embryo development 8
Tissue expression analysis 8
Antibiotic treatments 9
Results 10
AtRH7 expression is ubiquitous and active in the cell-dividing region 10
AtRH7 disruption causes severe defects in plant development 11
AtRH7 involvement in embryo development 12
AtRH7 is necessary for tolerance to prolonged cold stress in Arabidopsis 14
AtRH7 participates in rRNA biogenesis 15
atrh7 mutants exhibit resistance to ribosomal antibiotics 17
Discussion 19
Reference 25


Table List
Table 1 The progeny genotypes from self-crossed wild-type and heterozygous mutant plants 32
Table 2 Synchrony of embryogenesis in various developmental siliques in wild-type Arabidopsis 33
Table 3 Delayed embryogenesis in the globular stage in various developmental siliques in atrh7 heterozygous Arabidopsis 34
Table S1 Accession numbers and identities of AtRH7 homologous proteins 46
Table S2 Primers used in the study 47
Table S3 WT, atrh7-2, and atrh7-3 germination ratios 49






Figure List
Figure 1 AtRH7 expression patterns 35
Figure 1 (Cont.) AtRH7 expression patterns 36
Figure 2 Phenotypes of the Arabidopsis atrh7 mutants 37
Figure 3 Seed development in the developing siliques of the atrh7 (+/−) heterozygous and atrh7-2 homozygous plants. 38
Figure 4 Cold-intolerant phenotype in the atrh7 mutants 39
Figure 5 Accumulated pre-rRNAs containing 5’ETS, ITS1, ITS2, and 3’ETS in the atrh7 mutants 41
Figure 6 AtRH7 participates in the A2 site processing of 35S/45S pre-RNA in Arabidopsis 42
Figure 6 (cont.) AtRH7 participates in the A2 site processing of 35S/45S pre-RNA in Arabidopsis 43
Figure 6 (cont.) AtRH7 participates in the A2 site processing of 35S/45S pre-RNA in Arabidopsis 44
Figure 7 atrh7 mutants exhibit resistance to specific antibiotics 45
Figure S1 Amino acid sequences and domain structure of the AtRH7 protein 50
Figure S2 Phylogenetic tree of the AtRH7 homologous proteins 51
Figure S3 Characterization of the Arabidopsis atrh7 mutants 52
Figure S4 Phenotypes of the Arabidopsis atrh7 and atrh7-complement mutants 53
Figure S5 Comparison of developing embryo morphology between the WT plants and the atrh7-3 homozygous mutants 54

參考文獻 Abbasi, N., Kim, H.B., Park, N.I., Kim, H.S., Kim, Y.K., Park, Y.I., and Choi, S.B. (2010). APUM23, a nucleolar Puf domain protein, is involved in pre-ribosomal RNA processing and normal growth patterning in Arabidopsis. Plant J. 64, 960-976.
Apirion, D., and Saltzman, L. (1974). Functional interdependence of 50S and 30S ribosomal subunits. Mol. Gen. Genet. 135, 11-18.
Asakura, Y., Galarneau, E., Watkins, K.P., Barkan, A., and van Wijk, K.J. (2012). Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. Plant Physiol. 159, 961-974.
Aubourg, S., Kreis, M., and Lecharny, A. (1999). The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res. 27, 628-636.
Axt, K., French, S.L., Beyer, A.L., and Tollervey, D. (2014). Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional pre-rRNA cleavage. PLoS One 9, e85703.
Boudet, N., Aubourg, S., Toffano-Nioche, C., Kreis, M., and Lecharny, A. (2001). Evolution of intron/exon structure of DEAD helicase family genes in Arabidopsis, Caenorhabditis, and Drosophila. Genome Res. 11, 2101-2114.
Burch-Smith, T.M., Brunkard, J.O., Choi, Y.G., and Zambryski, P.C. (2011). Organelle-nucleus cross-talk regulates plant intercellular communication via plasmodesmata. Proc. Natl. Acad. Sci. USA 108, E1451-1460.
Byrd, A.K., and Raney, K.D. (2012). Superfamily 2 helicases. Front. Biosci. (Landmark Ed) 17, 2070-2088.
Byrne, M.E. (2009). A role for the ribosome in development. Trends Plant Sci. 14, 512-519.
Cartier, G., Lorieux, F., Allemand, F., Dreyfus, M., and Bizebard, T. (2010). Cold adaptation in DEAD-box proteins. Biochemistry 49, 2636-2646.
Chernoff, Y.O., Vincent, A., and Liebman, S.W. (1994). Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics. EMBO J. 13, 906-913.
Chi, W., He, B., Mao, J., Li, Q., Ma, J., Ji, D., Zou, M., and Zhang, L. (2012). The function of RH22, a DEAD RNA helicase, in the biogenesis of the 50S ribosomal subunits of Arabidopsis chloroplasts. Plant Physiol. 158, 693-707.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
Cmarko, D., Smigova, J., Minichova, L., and Popov, A. (2008). Nucleolus: the ribosome factory. Histol. Histopathol. 23, 1291-1298.
Cordin, O., Banroques, J., Tanner, N.K., and Linder, P. (2006). The DEAD-box protein family of RNA helicases. Gene 367, 17-37.
Curtis, M.D., and Grossniklaus, U. (2003). A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133, 462-469.
Ebersberger, I., Simm, S., Leisegang, M.S., Schmitzberger, P., Mirus, O., von Haeseler, A., Bohnsack, M.T., and Schleiff, E. (2014). The evolution of the ribosome biogenesis pathway from a yeast perspective. Nucleic Acids Res. 42, 1509-1523.
Fairman-Williams, M.E., Guenther, U.P., and Jankowsky, E. (2010). SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20, 313-324.
Gabashvili, I.S., Gregory, S.T., Valle, M., Grassucci, R., Worbs, M., Wahl, M.C., Dahlberg, A.E., and Frank, J. (2001). The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol. Cell 8, 181-188.
Ge, S.J., Yao, X.L., Yang, Z.X., and Zhu, Z.P. (1998). An Arabidopsis embryonic lethal mutant with reduced expression of alanyl-tRNA synthetase gene. Cell Res. 8, 119-134.
Gong, Z., Lee, H., Xiong, L., Jagendorf, A., Stevenson, B., and Zhu, J.K. (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc. Natl. Acad. Sci. USA 99, 11507-11512.
Gong, Z., Dong, C.H., Lee, H., Zhu, J., Xiong, L., Gong, D., Stevenson, B., and Zhu, J.K. (2005). A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17, 256-267.
Griffith, M.E., Mayer, U., Capron, A., Ngo, Q.A., Surendrarao, A., McClinton, R., Jurgens, G., and Sundaresan, V. (2007). The TORMOZ gene encodes a nucleolar protein required for regulated division planes and embryo development in Arabidopsis. Plant Cell 19, 2246-2263.
Guan, Q., Wu, J., Zhang, Y., Jiang, C., Liu, R., Chai, C., and Zhu, J. (2013). A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25, 342-356.
Horiguchi, G., Van Lijsebettens, M., Candela, H., Micol, J.L., and Tsukaya, H. (2012). Ribosomes and translation in plant developmental control. Plant Sci. 191-192, 24-34.
Hsu, Y.F., Chen, Y.C., Hsiao, Y.C., Wang, B.J., Lin, S.Y., Cheng, W.H., Jauh, G.Y., Harada, J.J., and Wang, C.S. (2014). AtRH57, a DEAD-box RNA helicase, is involved in feedback inhibition of glucose-mediated abscisic acid accumulation during seedling development and additively affects pre-ribosomal RNA processing with high glucose. Plant J. 77, 119-135.
Huang, C.K., Yu, S.M., and Lu, C.A. (2010a). A rice DEAD-box protein, OsRH36, can complement an Arabidopsis atrh36 mutant, but cannot functionally replace its yeast homolog Dbp8p. Plant Mol. Biol. 74, 119-128.
Huang, C.K., Huang, L.F., Huang, J.J., Wu, S.J., Yeh, C.H., and Lu, C.A. (2010b). A DEAD-box protein, AtRH36, is essential for female gametophyte development and is involved in rRNA biogenesis in Arabidopsis. Plant Cell Physiol. 51, 694-706.
Huang, T., Kerstetter, R.A., and Irish, V.F. (2014). APUM23, a PUF family protein, functions in leaf development and organ polarity in Arabidopsis. J. Exp. Bot. 65, 1181-1191.
Huang, T.S., Wei, T., Laliberte, J.F., and Wang, A. (2010c). A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. Plant Physiol. 152, 255-266.
Hubstenberger, A., Noble, S.L., Cameron, C., and Evans, T.C. (2013). Translation repressors, an RNA helicase, and developmental cues control RNP phase transitions during early development. Dev. Cell 27, 161-173.
Ito, T., Kim, G.T., and Shinozaki, K. (2000). Disruption of an Arabidopsis cytoplasmic ribosomal protein S13-homologous gene by transposon-mediated mutagenesis causes aberrant growth and development. Plant J. 22, 257-264.
Jarmoskaite, I., and Russell, R. (2011). DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip. Rev. RNA 2, 135-152.
Jarmoskaite, I., and Russell, R. (2014). RNA helicase proteins as chaperones and remodelers. Annu. Rev. Biochem. 83, 697-725.
Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907.
Kanai, M., Hayashi, M., Kondo, M., and Nishimura, M. (2013). The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth. Plant Cell Physiol. 54, 1431-1440.
Kant, P., Kant, S., Gordon, M., Shaked, R., and Barak, S. (2007). STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant Physiol. 145, 814-830.
Khan, A., Garbelli, A., Grossi, S., Florentin, A., Batelli, G., Acuna, T., Zolla, G., Kaye, Y., Paul, L.K., Zhu, J.K., Maga, G., Grafi, G., and Barak, S. (2014). The Arabidopsis STRESS RESPONSE SUPPRESSOR DEAD-box RNA helicases are nucleolar- and chromocenter-localized proteins that undergo stress-mediated relocalization and are involved in epigenetic gene silencing. Plant J. 79, 28-43.
Kim, J.S., Kim, K.A., Oh, T.R., Park, C.M., and Kang, H. (2008). Functional characterization of DEAD-box RNA helicases in Arabidopsis thaliana under abiotic stress conditions. Plant Cell Physiol. 49, 1563-1571.
Kim, M.H., Sonoda, Y., Sasaki, K., Kaminaka, H., and Imai, R. (2013). Interactome analysis reveals versatile functions of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 in RNA processing within the nucleus and cytoplasm. Cell Stress Chaperones 18, 517-525.
Kressler, D., Linder, P., and de La Cruz, J. (1999). Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 19, 7897-7912.
Kuhn, E. (2012). Toward understanding life under subzero conditions: the significance of exploring psychrophilic "cold-shock" proteins. Astrobiology 12, 1078-1086.
Lafontaine, D., Vandenhaute, J., and Tollervey, D. (1995). The 18S rRNA dimethylase Dim1p is required for pre-ribosomal RNA processing in yeast. Genes Dev. 9, 2470-2481.
Lange, H., Sement, F.M., and Gagliardi, D. (2011). MTR4, a putative RNA helicase and exosome co-factor, is required for proper rRNA biogenesis and development in Arabidopsis thaliana. Plant J. 68, 51-63.
Le, B.H., Cheng, C., Bui, A.Q., Wagmaister, J.A., Henry, K.F., Pelletier, J., Kwong, L., Belmonte, M., Kirkbride, R., Horvath, S., Drews, G.N., Fischer, R.L., Okamuro, J.K., Harada, J.J., and Goldberg, R.B. (2010). Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc. Natl. Acad. Sci. USA 107, 8063-8070.
Linder, P. (2006). Dead-box proteins: a family affair--active and passive players in RNP-remodeling. Nucleic Acids Res. 34, 4168-4180.
Linder, P., and Fuller-Pace, F.V. (2013). Looking back on the birth of DEAD-box RNA helicases. Biochim. Biophys. Acta 1829, 750-755.
Liu, M., Shi, D.Q., Yuan, L., Liu, J., and Yang, W.C. (2010). SLOW WALKER3, encoding a putative DEAD-box RNA helicase, is essential for female gametogenesis in Arabidopsis. J. Integr. Plant Biol. 52, 817-828.
Lorkovic, Z.J., Herrmann, R.G., and Oelmuller, R. (1997). PRH75, a new nucleus-localized member of the DEAD-box protein family from higher plants. Mol. Cell. Biol. 17, 2257-2265.
Martin, R., Straub, A.U., Doebele, C., and Bohnsack, M.T. (2013). DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol. 10, 4-18.
Medina, J., Catala, R., and Salinas, J. (2011). The CBFs: three arabidopsis transcription factors to cold acclimate. Plant Sci. 180, 3-11.
Mingam, A., Toffano-Nioche, C., Brunaud, V., Boudet, N., Kreis, M., and Lecharny, A. (2004). DEAD-box RNA helicases in Arabidopsis thaliana: establishing a link between quantitative expression, gene structure and evolution of a family of genes. Plant Biotechnol. J. 2, 401-415.
Missbach, S., Weis, B.L., Martin, R., Simm, S., Bohnsack, M.T., and Schleiff, E. (2013). 40S ribosome biogenesis co-factors are essential for gametophyte and embryo development. PLoS One 8, e54084.
Nayak, N.R., Putnam, A.A., Addepalli, B., Lowenson, J.D., Chen, T., Jankowsky, E., Perry, S.E., Dinkins, R.D., Limbach, P.A., Clarke, S.G., and Downie, A.B. (2013). An Arabidopsis ATP-dependent, DEAD-box RNA helicase loses activity upon IsoAsp formation but is restored by PROTEIN ISOASPARTYL METHYLTRANSFERASE. Plant Cell 25, 2573-2586.
Nazar, R.N. (2004). Ribosomal RNA processing and ribosome biogenesis in eukaryotes. IUBMB Life 56, 457-465.
Nishimura, K., Ashida, H., Ogawa, T., and Yokota, A. (2010). A DEAD box protein is required for formation of a hidden break in Arabidopsis chloroplast 23S rRNA. Plant J. 63, 766-777.
Nishimura, T., Wada, T., Yamamoto, K.T., and Okada, K. (2005). The Arabidopsis STV1 protein, responsible for translation reinitiation, is required for auxin-mediated gynoecium patterning. Plant Cell 17, 2940-2953.
O′Connor, M., Gregory, S.T., and Dahlberg, A.E. (2004). Multiple defects in translation associated with altered ribosomal protein L4. Nucleic Acids Res. 32, 5750-5756.
Okanami, M., Meshi, T., and Iwabuchi, M. (1998). Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucleic Acids Res. 26, 2638-2643.
Owttrim, G.W. (2006). RNA helicases and abiotic stress. Nucleic Acids Res. 34, 3220-3230.
Owttrim, G.W. (2013). RNA helicases: diverse roles in prokaryotic response to abiotic stress. RNA Biol. 10, 96-110.
Perrot-Rechenmann, C. (2010). Cellular responses to auxin: division versus expansion. Cold Spring Harb. Perspect. Biol. 2, a001446.
Petricka, J.J., and Nelson, T.M. (2007). Arabidopsis nucleolin affects plant development and patterning. Plant Physiol. 144, 173-186.
Phipps, K.R., Charette, J., and Baserga, S.J. (2011). The small subunit processome in ribosome biogenesis-progress and prospects. Wiley Interdiscip. Rev. RNA 2, 1-21.
Rocak, S., and Linder, P. (2004). DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5, 232-241.
Rocak, S., Emery, B., Tanner, N.K., and Linder, P. (2005). Characterization of the ATPase and unwinding activities of the yeast DEAD-box protein Has1p and the analysis of the roles of the conserved motifs. Nucleic Acids Res. 33, 999-1009.
Rodriguez-Galan, O., Garcia-Gomez, J.J., and de la Cruz, J. (2013). Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. Biochim. Biophys. Acta 1829, 775-790.
Rosado, A., and Raikhel, N.V. (2010). Application of the gene dosage balance hypothesis to auxin-related ribosomal mutants in Arabidopsis. Plant Signal. Behav. 5, 450-452.
Rosado, A., Li, R., van de Ven, W., Hsu, E., and Raikhel, N.V. (2012). Arabidopsis ribosomal proteins control developmental programs through translational regulation of auxin response factors. Proc. Natl. Acad. Sci. USA 109, 19537-19544.
Rosado, A., Sohn, E.J., Drakakaki, G., Pan, S., Swidergal, A., Xiong, Y., Kang, B.H., Bressan, R.A., and Raikhel, N.V. (2010). Auxin-mediated ribosomal biogenesis regulates vacuolar trafficking in Arabidopsis. Plant Cell 22, 143-158.
Russell, R., Jarmoskaite, I., and Lambowitz, A.M. (2013). Toward a molecular understanding of RNA remodeling by DEAD-box proteins. RNA Biol. 10, 44-55.
Sloan, K.E., Mattijssen, S., Lebaron, S., Tollervey, D., Pruijn, G.J., and Watkins, N.J. (2013). Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. J. Cell Biol. 200, 577-588.
Stelzl, U., and Nierhaus, K.H. (2001). A short fragment of 23S rRNA containing the binding sites for two ribosomal proteins, L24 and L4, is a key element for rRNA folding during early assembly. RNA 7, 598-609.
Stonebloom, S., Burch-Smith, T., Kim, I., Meinke, D., Mindrinos, M., and Zambryski, P. (2009). Loss of the plant DEAD-box protein ISE1 leads to defective mitochondria and increased cell-to-cell transport via plasmodesmata. Proc. Natl. Acad. Sci. USA 106, 17229-17234.
Szakonyi, D., and Byrne, M.E. (2011). Ribosomal protein L27a is required for growth and patterning in Arabidopsis thaliana. Plant J. 65, 269-281.
Thomson, E., Ferreira-Cerca, S., and Hurt, E. (2013). Eukaryotic ribosome biogenesis at a glance. J. Cell Sci. 126, 4815-4821.
Van Lijsebettens, M., Vanderhaeghen, R., De Block, M., Bauw, G., Villarroel, R., and Van Montagu, M. (1994). An S18 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J. 13, 3378-3388.
Vashisht, A.A., and Tuteja, N. (2006). Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. Journal of photochemistry and photobiology. B, Biology 84, 150-160.
Wieckowski, Y., and Schiefelbein, J. (2012). Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in Arabidopsis. Plant Cell 24, 2839-2856.
Woolford, J.L., Jr., and Baserga, S.J. (2013). Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195, 643-681.
Xu, R.R., Qi, S.D., Lu, L.T., Chen, C.T., Wu, C.A., and Zheng, C.C. (2011). A DExD/H box RNA helicase is important for K+ deprivation responses and tolerance in Arabidopsis thaliana. FEBS J. 278, 2296-2306.
Yang, H., Henning, D., and Valdez, B.C. (2005). Functional interaction between RNA helicase II/Gu(alpha) and ribosomal protein L4. FEBS J. 272, 3788-3802.
Yao, Y., Ling, Q., Wang, H., and Huang, H. (2008). Ribosomal proteins promote leaf adaxial identity. Development 135, 1325-1334.
Zakrzewska-Placzek, M., Souret, F.F., Sobczyk, G.J., Green, P.J., and Kufel, J. (2010). Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA. Nucleic Acids Res. 38, 4487-4502.
Zhou, M.Q., Shen, C., Wu, L.H., Tang, K.X., and Lin, J. (2011). CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Crit. Rev. Biotechnol. 31, 186-192.
指導教授 陸重安(Chung-an Lu) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明