以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:106 、訪客IP:3.141.25.133
姓名 黃介澤(Chieh-Tse Huang) 查詢紙本館藏 畢業系所 光機電工程研究所 論文名稱 散焦及像散型流體透鏡結合適應性光學系統於驗光儀上之應用
(An integrated phoropter combined both defocus and astigmatic lenses with adaptive optics correction)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本論文是關於流體透鏡的光學特性與像差研究,並且結合適應性光學相關應用。本論文研究重點為製作方形流體透鏡並搭配適應性光學系統,此系統的調適特性可有效對於具變焦能力之流體透鏡校正其像差。適應性光學系統的加入可有效地校正像差,雖然會受限於可變形反射鏡的3.5 μm制動範圍,但對於眼科醫學上之應用有很大潛力。另外,散焦及像散型流體透鏡結合適應性光學系統於驗光儀上之應用,我們製作出一流體驗光儀,其包含散焦及像散型流體透鏡。透過流體體積的改變達到校正效果並搭配適應性光學系統,達到改善影像品質之目的。
以流體驅動之流體透鏡補償屈光不正(refractive error) 已被廣泛地應用於眼科醫學上。流體透鏡雖可達到變焦之特性,然而其曲率變化及折射率不均將大幅降低影像品質。實驗中,我們以適應性光學系統補償可調式像散型流體透鏡所產生之波前像差。各個獨立透鏡的光學特性以波前感測器量測。適應性光學系統展示了分別注射三種不同體積下Zernike像差由-0.12, -0.25, -0.32 降低至 0.01, -0.01, -0.20 μm,可調屈光度範圍由0.83至1.84D。此外,結合可調式像散型流體透鏡及搭配適應性光學系統,成功地補償以像散試片產生圓柱軸(cylinder axis) 180°之-1D圓柱屈光度(cylinder power)。
本論文提出一個流體驅動的驗光儀,包含了兩種形式流體透鏡: 一散焦型流體透鏡及兩相交45度之方形流體透鏡,其中的三個透鏡可獨立作動並控制。最後搭配適應性光學系統確認流體驗光儀的光學品質及像差校正能力。我們所展示的流體驗光儀在大小及重量上大幅降低,將更容易應用於眼科醫學上。首先,我們以散焦及像散試片測試流體驗光儀之校正能力,可成功補償 -1.5D圓柱屈光度,圓柱軸30°之試片以及補償形流體透鏡所產生之散焦,最後搭配適應性光學系統,將有效提升影像品質。
摘要(英) Fluidically controlled lenses which adaptively correct prescribed refractive error without mechanically moving parts are extensively applied in the ophthalmic applications. Capable of variable-focusing properties, however, the associated aberrations due to curvature change and refractive index mismatch can inherently degrade image quality severely. Here we present the experimental study of the aberrations in tunable astigmatic lens and use of adaptive optics to compensate for the wavefront errors. Characterization of the optical properties of the individual lenses is carried out by Shack–Hartmann measurements. Adaptive optics (AO) based scheme is demonstrated for three injected fluidic volumes, resulting in a substantial reduction of the wavefront errors from -0.12, -0.25, -0.32 to 0.01, -0.01, -0.20 μm, respectively, corresponding to the optical power tenability of 0.83 to 1.84D. Furthermore, an integrated optical phoroptor consisting of adjustable astigmatic lenses and AO correction is demonstrated such that an induced refraction error of -1D cylinder at 180° of a trial lens is experimentally corrected.
An integrated phoropter combined both defocus and astigmatic lenses with Adaptive optics correction. A phoropter use to determine refractive error in patients. The phoropter is composed of two lens types: one defocus lens and two astigmatic fluidic lenses that provide sphere power and cylinder power. Each of the lenses is composed of an elastic membrane that is secured with rectangular retaining ring that results in a restraining aperture of 30.0 mm×15.0 mm. Optical power tunability can be achieved via controlled injected fluidic volume, results in a plano-convex or plano-concave lens configuration under uniform pressure. we will focus on aberrations expressed by Zernike polynomials, preferably the term of astigmatism aberration commonly encountered in ophthalmology, to correct wavefront aberrations induced by tunable astigmatic fluidic lens. An integrated optical phoroptor which includes fluidically adjustable astigmatic fluidic lenses and AO correction scheme is constructed. Characterization of the optical properties of the individual lenses as well as AO correction capability is verified by Shack–Hartmann measurements. The trial lens induced refraction error of -1.5D cylinder power at 30°, and the refractive error is corrected by the phoropter. AO based scheme is demonstrated to achieve a substantial reduction of the wavefront errors under 0.2 μm RMS.
關鍵字(中) ★ 流體透鏡
★ 適應性光學
★ 驗光儀關鍵字(英) ★ Fluidic lens
★ Adaptive optics
★ Deformable mirrors論文目次 目錄
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 1
1-2-1流體透鏡 1
1-2-2適應性光學 2
1-3 研究動機與目的 3
1-4 論文架構 3
第二章 製作方形流體透鏡並搭配適應性光學系統 5
2-1 流體透鏡製作 5
2-2 適應性光學 6
2-2-1適應性光學架構 6
2-2-2 Shack-Hartmann波前感測器 7
2-2-3可變形反射鏡 (Deformable Mirrors) 9
2-2-4控制軟體(Control Software) 14
2-3 流體透鏡光學性質 15
2-3 實驗設置 17
2-4 適應性光學系統的校正範圍 19
2-5 搭配適應性光學系統改善影像品質 23
第三章 流體驗光儀結合適應性光學系統 26
3-1 製作流體透鏡與光學實驗設置 26
3-1-1方形流體透鏡 26
3-1-2圓形流體透鏡 27
3-2 流體驗光儀結構與實驗配置 28
3-3 流體透鏡光學特性與像差補償 28
3-3-1方形流體透鏡並搭配圓形流體透鏡 32
3-3-2兩相交45o方形流體透鏡並搭配圓形流體透 34
3-4搭配適應性光學系統 37
第四章 結論 39
4-1 搭配適應性光學系統並量測方形流體透鏡之光學特性 39
4-2 藉由可調式散焦型流體透鏡補償交叉式方形流體透鏡所產生之像差並搭配適應性光學 40
參考文獻 41
參考文獻 [1] S. A. Reza, N. A. Riza, Opt. Commun. 282 (7) (2009) 1298–1303.
[2] Y. J. Lin, K. M. Chen, and S.T. Wu, Opt. Express 17 (10) (2009) 8651–8656.
[3] J. W. Hardy, in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1542 (1991) 2–17.
[4] J. W. Hardy, J. E. Lefebvre, C. L. Koliopoulos, J. Opt. Soc. Am. 67 (1977) 360.
[5] Y. K. Fuh, K. C. Hsu, J. R. Fan, Opt. Lett. 37 (5) (2012) 848-850.
[6] D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, Y. H. Lo, Appl. Phys. Lett. 82 (19) (2003) 3171-3172.
[7] D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, Y. H. Lo, Appl. Opt. 43 (4) (2004) 783-787.
[8] R. A. Gunasekaran, M. Agarwal, S. Singh, P. Dubasi, P. Coane, and K. Varahramyan, Opt. Lasers Eng. 43 (2005) 686.
[9] D.-Y. Zhang, N. Justis, and Y.-H. Lo, Opt. Commun. 249 (2005) 175.
[10] R. Marks, D. L. Mathine, J. Schwiegerling, G. Peyman, N. Peyghambarian, Appl. Opt. 48 (19) (2009) 3580-3587.
[11] R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling , N. Peyghambarian, Opt. Lett. Vol. 34 (4) (2009) 515-517.
[12] D. Y. Zhang, N. Justis, V. Lien, Y. H. Lo, Appl. Phys. Lett. 84 (21) (2004) 4194-4196
[13] R. Marks, D. L. Mathine, G. Peyman, J. Schwiegerling , N. Peyghambarian, Opt. Lett. 35 (5) (2010) 739-741.
[14] G. Beadie, M. L. Sandrok, M. J. Wiggins, R. S. Lepkowicz, J. S. Shirk, M.Ponting, Y. Yang, T. Kazmierczak, A. Hiltner, E. Baer, Opt. Express 16 (16) (2008) 11847-11856
[15] D. Zhang, N. Justis, Y. Lo, Opt. Commun. 249 (2005) 175-182.
[16] S. Reichelt and H. Zappe, Opt. Express 15(21) (2008) 14146-14154.
[17] Y. K. Fuh, K. C. Hsu, J. R. Fan, M. X. Lin, Microwave Opt. Technol. Lett. (11) (2011) 53.
[18] H. Yu, G. Zhou, F. S. Chau, F. Lee, Opt. Lett. 34 (21) (2009) 3454-3456.
[19] N. Chronic, G. L. Liu, K. H. Jeong, L. P. Lee, Opt. Express 11 (19) (2003) 2370-2378.
[20] Werber, H. Zappe, Appl. Opt. 44 (16) (2005) 3238-3245.
[21] H. B. Yu, G. Y. Zhou, F. K. Chau, F.W. Lee, S. H. Wang, H. M. Leung, Opt. Express 17 (6) (2009) 4782-4790.
[22] G. H. Feng, Y. C. Chou, Sens. and Actua. A 156 (2009) 342-349.
[23] G. H. Feng, Y. C. Chou, Appl. Opt. 48 (18) (2009) 3284-3290.
[24] Robert Tyson, Principles of adaptive optics, Third Edition.
[25] W. M. Lee, S. H. Yun, Opt. Lett. 36 (23) (2011) 4608-4610.
[26] Y. K. Fuh, K. C. Hsu, J. R. Fan, Opt. Lasers Eng. 50 (2012) 312-316.
[27] Thorlab, “Operation Manual Thorlabs Instrumentation”.
[28] Tripoli, N. (2003). The Zernike polynomials. In: F. Caimi, & R. Brancato (Eds.), The Aberrometers: theory, clinical and surgical applications (pp. 15-26). Canelli, Italy: Fabiano Editore.
[29] T. G. Bifano, J. Perreault, R. K. Mali, M. N. Horenstein, IEEE J. Sel. Top. Quant. 5 (1) (1999) 83-89.
[30] Main components of BMC′s MEMS deformable mirrors. (http://www.thorlabs.com/NewGroupPage9_PF.cfm?ObjectGroup_ID=3258)
[31] K. M. Hampson, J. Mod. Optic. 55 (21) (2008) 3425–3467.
[32] Young W C and Budynas R C 2002 Roark′s Formulas for Stress and Strain 7th edn (New York: McGraw-Hill).
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2014-7-16 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare