博碩士論文 101327012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:3.15.221.25
姓名 陳旭東(Syu-Dong Chen)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 基於Talbot效應之疊紋式角度量測系統開發
(Measurement of angular displacement system based on Talbot effect and moiré method)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 應用螢光顯微技術強化RDL線路檢測系統★ 基於人工智慧之PCB瑕疵檢測技術開發
★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發★ 全場相位式表面電漿共振技術
★ 波長調制外差式光柵干涉儀之研究★ 攝像模組之影像品質評價系統
★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用★ 光強差動式表面電漿共振感測術之研究
★ 準共光程外差光柵干涉術之研究★ 波長調制外差散斑干涉術之研究
★ 全場相位式表面電漿共振生醫感測器★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究
★ 複合式長行程精密定位平台之研究★ 紅外波段分光之全像集光器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一套新穎且架設簡易的角度量測技術-「基於Talbot 效應成像之疊紋式
角度量測系統」。本系統可分為兩部分:疊紋量測光路系統與相位分析系統。疊紋量測光路系統是將兩相隔特殊距離之雙光柵,以夾具等機構安裝於待測平台上,系統光源He-Ne Laser 搭配擴束鏡以準直光入射光柵機構,產生的疊紋影像依Talbot 效應成像於CCD。當待測平台產生角度旋轉時,裝配於一體的光柵組機構連帶產生旋轉,利用疊紋將光柵相對變化物理量放大的效果,搭配疊紋相位分析系統,便可計算待測平台旋轉角度,具有arcsec 級角度量測解析度。
本系統核心元件為兩片光柵週期介於50 ~ 200 m 之線性光柵,製作難度不高,
搭配Talbot 效應成像疊紋影像無須額外透鏡或光學元件輔助,實現高精度低成本的角度量測裝置。系統的量測解析度可藉由調整光柵間距及光柵週期來改變,具有多種組合,可依不同情況選擇適當配置。代表性的組合為200 m 光柵週期搭配1 倍Talbot距離之光柵間距(12.64 cm),具有0.36 arcsec 角度解析度,1.06°/ arcsec 角度靈敏度,±6°量測範圍與1.36°/s 理論量測速度。
摘要(英) We proposed a new method based on the moiré technique and Talbot effect to measure the angular displacement. The measurement system is divided into two parts, the optical
moiré system and the phase analysis system. In the first part, the collimated He-Ne laser beam is expanded by the beam expander (BE) and is forward incident into the two linear amplitude gratings, which placed symmetrically by a centre of the precision rotation stage. These two gratings can be regarded as the a spatial modulator. After passing through the gratings, the spatial modulated light beam forms a moiré pattern and is captured by the CCD camera. By adjusting the distance D between the two gratings to meet the Talbot image distance (Zt ), the clear and high contrast moiré pattern can be obtained. When the rotation stage provides a rotation, the relative displacement between these two gratings results in the phase shifting of the moiré pattern. The phase analysis by the subfringe integration
arithmetic (SIA). Here, the period of moiré pattern is then divided into four areas, A, B, C and D for further analysis. By means of calculating the intensity integration of the four areas with SIA, the variation of phase shift of the moiré pattern can be obtained, and the rotation angle can be determined. This is the second part of this system.
Clearly, the experimental results demonstrate that the measurement range of our system can achieve ±6°. Considering the high-frequency noise, the measurement resolution of the system is about 0.36 arcsec.
關鍵字(中) ★ Talbot 效應
★ 疊紋
★ 角度量測
關鍵字(英) ★ angular displacement,
★ moiré method
★ Talbot effect
★ phase detection
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
符號說明 x
第一章 緒論 1
1.1研究背景 1
1.2 文獻回顧 1
1.2.1光學式角度量測文獻回顧 2
1.2.2疊紋效應文獻回顧 10
1.2.3疊紋式角度量測文獻回顧 11
1.3 研究目的 14
1.4 論文架構 15
第二章 基礎理論 16
2.1光柵的Talbot效應 16
2.2疊紋效應 18
2.2.1疊紋基本原理 18
2.2.2疊紋位移理論 21
2.2.3疊紋縮放理論 22
2.3亞條紋積分法 23
2.4小結 26
第三章 系統架構 27
3.1元件介紹 27
3.2疊紋式角度量測系統 29
3.2.1雙光柵旋轉架構 30
3.2.2光柵Talbot成像系統 31
3.2.3系統量測範圍 32
3.3疊紋相位分析 34
3.3. 疊紋資訊子陣列拓展 34
3.3.2.疊紋相位位移判斷 36
3.4小結 38
第四章 實驗結果與討論 39
4.1系統架構設置 39
4.2系統量測範圍與角度步階實驗 40
4.2.1光柵週期200 m 41
4.2.2光柵週期100 m 49
4.2.3光柵週期50 m 55
4.3系統量測速度 61
4.4實驗討論 63
4.4.1疊紋訊號對比度分析 63
4.4.2相同光柵週期不同間距D 70
4.4.3不同光柵週期相同間距D 70
4.5小結 74
第五章 誤差分析 75
5.1系統誤差 75
5.1.1解相系統之相位誤差 75
5.1.2光柵引入角度誤差 83
5.1.3間距D引入角度誤差 84
5.2隨機誤差 85
5.2.1環境擾動 85
5.2.2光學元件與夾具材料熱特性 87
5.2.3電子雜訊 88
5.3小結 89
第六章 結論與未來展望 90
參考文獻 91
參考文獻 [1]. J. Y. Lee and G. A. Jiang, “Displacement measurement using a wavelength phase-shifting grating interferometer,” Opt. Express 21(21), 2555325564 (2013).
[2]. S. W. Yang C. S. Lin, and S. K. Lina, “3D surface profile measurement of unsymmetrical microstructure using Fizeau interferometric microscope,” Opt. Laser Eng. 51(4), 348357 (2013).
[3]. X. Dai, O. Sasaki, J. E. Greivenkamp, and Takamasa Suzuki, “High accuracy, wide range, rotation angle measurement by the use of two parallel interference patterns,” Appl. Opt. 36(25), 61906195 (1997).
[4]. C. C. Kuo and Y. R. Chen, “Rapid optical inspection of bubbles in the silicone rubber ,” Optik 124(13), 14801485 (2013).
[5]. X. D. Chen, D. Wei, W. Li, and Y. Deng, “Nonlinear elastodynamic behaviour analysis of high-speed spatial parallel coordinate measuring machines ,” Int. J. Adv. Robot Syst. 9(140), 16 (2012).
[6]. A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2(9), 413415 (1971).
[7]. Y. C. Lin, “Characteristics of compact-size D lens collimator for microoptics devices applications,” Microw. Opt. Techn. Let. 49(8), 19461949 (2007).
[8]. C. H. Liu H. L. Huang, and H. W. Lee, “Five-degrees-of-freedom diffractive laser encoder,” Appl. Opt. 48(14), 27672777 (2009).
[9]. J. M. Sakamoto, C. Kitano, G. M. Pacheco, and B. R. Tittmann, “High sensitivity fiber optic angular displacement sensor and its application for detection of ultrasound,” Appl. Opt. 51(20), 48414851 (2012).
[10]. S. Yokozeki, K. Patorski, and K. Ohnishi, “Collimation method using fourier imaging and moire techniques,” Appl. Opt. 14(4), 401405 (1975).
[11]. M. Ikram and G. Hussain, “Michelson interferometer for precision angle measurement,” Appl. Opt. 38(1), 113120 (1995).
[12]. P. S. Huang and Y. Li, “Small-angle measurement by use of a single prism,” Appl. Opt. 37(28), 66366642 (1998).
[13]. J. Guo, Z. Zhu, W. Deng, and S. Shen, “Angle measurement using surface-plasmon-resonance heterodyne interferometry: a new method,” Opt. Eng. 37(11), 29983001 (1998).
[14]. S. Makinouchi, A. Watanabe, M. Takasaki, T. Ohara, J. Ong, and S.Wakui, “An evaluation of a modulated laser encoder,” Precis. Eng. 35(2), 302308 (2011).
[15]. A. Konyakhin and T. V. Turgalieva, “Three-coordinate digital autocollimator,” Opt. Techn. 80(12), 772777 (2013).
[16]. C. H. Liua and C. H. Cheng, “Development of a grating based multi-degree of freedom laser linear encoder using diffracted light,” Sens. Actuators A(181), 8793 (2012).
[17]. F. Quercioli, A. Mannoni, and B. Tiribilli, “Laser Doppler velocimetry with a compact disc pickup,” Appl. Opt. 37(25), 59325937 (1998).
[18]. Q. Li, L. Bai, S. Xue, and L. Chen, “Autofocus system for microscope,” Opt. Eng. 41(6), 12891294 (2002).
[19]. A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21(2), 110 (2010).
[20]. K. C. Fan, B. H. Liao, and F. Cheng, “Ultra-Precision Angle Measurement based on Michelson Interferometry,” CSME 34(1), 3944 (2013).
[21]. S. Saikan, K. Uchikawa, and H. Ohsawa, “Phase-modulation technique for accumulated photon echo,” Opt. Lett. 16(1), 16121628 (1991).
[22]. J. Zheng, “Optical frequency-modulated continuous-wave interferometers,” Appl. Opt. 45(12), 27232730 (2006).
[23]. O.Sasaki, C. Togashi, and T. Suzuki, “Two-dimensional rotation angle measurement using a sinusoidal phase-modulating laser diode interferometer,” Opt. Eng. 42(4), 11321136 (2003).
[24]. D. Malacara, Twyman-Green Interferometer (John Wiley & Sons.Inc, 2007)
[25]. M. H. Chiu and D. C. Su, “Improved technique for measuring small angles,” Appl. Opt. 36(28), 71047106 (1997).
[26]. M. H. Chiu, S. F. Wang, and R. S. Chang, “Instrument for measuring small angles by use of multiple total internal reflections in heterodyne interferometry,” Appl. Opt. 43(29), 54385442 (2004).
[27]. 賴律臻,「差動式疊紋自動對焦技術」,國立中央大學,碩士論文,2011
[28]. J. Guo, Z. Zhu, and W. Deng, “Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation,” Appl. Opt. 38(29), 65506555 (1999).
[29]. T. Suzuki, H. Nakamura, O. Sasaki, and J. E. Greivenkamp, “Small-rotation-angle measurement using an imaging method,” Opt. Eng. 40(3), 426432 (2001).
[30]. S. S. Nukala, S. S. Gorthi, and K. R. Lolla, “Novel composite coded pattern for small angle measurement using imaging method,” Proc. SPIE 6289, 1D21D11 (2006).
[31]. V. Mayer et al., “New High Resolution Optical Incremental Rotary Encoder,” presented at Integration Issues of Miniaturized Systems - MOMS, MOEMS, ICS and Electronic Components, 2008 2nd European Conference & Exhibition, Spain , pp.18 APR. 2008.
[32]. 高清芬,「旋轉編碼器之原理」,明道大學。
[33]. Lord Rayleigh, “On the manufacture and theory of diffraction-gratings,” Philos. Mag. 47(310), 8193 (1874).
[34]. H. Chandrasekaran, R. Nagarajan, and K. N. Padmanabha, “Application of moiré technique in the stress analysis of cutting tools,” Strain 14(2), 6471 (1978).
[35]. K. G. Harding and J. S. Harris, “Projection moire interferometer for vibration analysis,” Appl. Opt. 22(6), 856861 (1983).
[36]. 胡錦標,林憲陽,楊宗興,蔡奇能,謝宏榮,謝啟堂,精密光電技術,高立書局,民國八十九年。
[37]. G. Mauvoisin, F. Brémand, and A. Lagarde, “Three-dimensional shape reconstruction by phase-shifting shadow moiré,” Appl. Opt. 33(11), 21632169 (1994).
[38]. Y. B. Choi and S. W. Kim, “Phase-shifting grating projection moire´ topography,” Opt. Eng. 37(3), 10051010 (1998).
[39]. Y. Nakano, “Automatic measurements of the small angle variation using a holographic moire interferometry and a computer processing,” Proc. SPIE 673, 180183 (1986).
[40]. S. Nihommori et al, “Optical Encoder,” United States Patent, US 6,635,863 B1 (2003).
[41]. H.F. Talbot, “Facts relating to optical science,” Philos. Mag. Series 3 9(56), 401407 (1836).
[42]. Lord Rayleigh, “On copying diffraction-gratings, and on some phenomena connected therewith,” Philos. Mag. Series 5 11(67), 196205 (1881).
[43]. Skullsinthestars, “Rolling out the (optical) carpet: the Talbot effect,” http://skullsinthestars.com/2010/03/04/rolling-out-the-optical-carpet-the-talbot-effect.
[44]. K. Creath and J. C. Wyant, Optical Shop Testing (John Wiley & Sons.Inc, 1992), Chap. 16.
[45]. M. Wang, “Subfringe integration method for automatic analysis of moire deflection tomography,” Opt. Eng. 39(10), 27262733 (2000).
指導教授 李朱育(Ju-Yi Lee) 審核日期 2014-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明