博碩士論文 101327014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:18.119.102.149
姓名 陳林裕(Lin-yu Chen)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 雙折射外差干涉術之角度量測及定位技術開發
(Development of angular displacement measurement and positioning by birefringence heterodyne interferometry)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 應用螢光顯微技術強化RDL線路檢測系統★ 基於人工智慧之PCB瑕疵檢測技術開發
★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發★ 全場相位式表面電漿共振技術
★ 波長調制外差式光柵干涉儀之研究★ 攝像模組之影像品質評價系統
★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用★ 光強差動式表面電漿共振感測術之研究
★ 準共光程外差光柵干涉術之研究★ 波長調制外差散斑干涉術之研究
★ 全場相位式表面電漿共振生醫感測器★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究
★ 複合式長行程精密定位平台之研究★ 紅外波段分光之全像集光器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用雙折射外差干涉術開發一種大範圍且具高精度的角度偵測技術,可應用於角度定位系統。P與S偏光通過雙折射晶體時,其相位差變化對入射角極為靈敏。外差干涉儀可精密地擷取兩偏振光的相位變化,以達到量測角度的目的。同時,我們設計一種新穎光路,以稜鏡將光線導入雙折射晶體,可提高相位對於入射角的靈敏度。於此研究中,我們開發了兩套角度量測系統,分別為線偏光系統與旋光系統。兩系統皆為共光程的架構,可有效地降低環境的干擾。根據實驗結果,線偏光系統的解析力為1.2×10-4° (量測範圍: -20°~3°)。旋光系統的解析力為3×10-5° (量測範圍¬:¬¬±2.5×10-3°)。最後我們整合了角度量測、步進驅動與回授控制裝置,完成了角度定位系統。其定位精度可達1×10-3°,定位範圍20°。
摘要(英) The birefringence heterodyne interferometry for the angular measurement and position is presented. The advantage of the instrument is the large measurement range and high resolution. When p- and s-polarized beams pass through a birefringence crystal, the phase difference between these two polarized beams is sensitive to the incident angle. We can determine the angular variation with the heterodyne interferometer which can precisely detect the phase difference between these two polarized beams. Moreover, a new optical path is designed to enhance the sensitivity by means of prism which couples the light to the birefringence crystal. There are two measurement modes in our system, linear and circular polarized modes. The experimental results show that the resolution of linear polarized mode is 1.2×10-4° (measurement range: -20°~3°) and the resolution of circular polarized mode is 3×10-5° (measurement range: ±2.5×10-3°). Besides, we built an angular positioning system with 1×10-3° accuracy and 20° positioning range by means of an angular measurement system, a step motor and a feedback controller.
關鍵字(中) ★ 雙折射干涉術
★ 外差干涉術
★ 角度量測
★ 定位系統
關鍵字(英) ★ birefringence
★ heterodyne interferometry
★ angular measurement
★ position
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 角度量測文獻回顧 2
1-2-2 外差干涉術文獻回顧 10
1-3 研究動機與目的 12
1-4 論文架構 12
第二章 基礎理論 13
2-1 干涉術 13
2-2 外差干涉術 14
2-2-1 外差干涉術 14
2-2-2 旋光外差干涉術 15
2-3 共光程干涉儀之角度感測裝置 16
2-3-1 雙折射效應 17
2-4 外差相位調解 20
2-4-1 鎖相放大器 20
2-4-2 邊緣時間法 22
2-4-3 相位解纏繞 23
2-5 小結 23
第三章 系統架構 24
3-1 元件儀器介紹 24
3-2 角度感測裝置 26
3-2-1 角度量測原理 26
3-2-2 最佳化設計 27
3-3 線偏光系統 30
3-4 旋光系統 32
3-5 訊號調解系統 35
3-5-1 線偏光系統之訊號調解流程 36
3-5-2 旋光系統之訊號調解流程 38
3-6 角度定位系統 39
3-7 小結 41
第四章 實驗結果與討論 42
4-1 線偏光系統量測實驗 42
4-1-1 特性曲線量測 42
4-1-2 小行程量測實驗 44
4-1-3 中行程量測實驗 48
4-1-4 長行程量測實驗 54
4-1-5 穩定度實驗 57
4-2 旋光系統量測實驗 59
4-2-1 特性曲線量測 59
4-2-2 小行程量測實驗 61
4-2-3 穩定度實驗 65
4-3 量測實驗討論 66
4-3-1 靈敏度 66
4-3-2 解析度 68
4-3-3 量測範圍 68
4-4 角度定位實驗 71
4-4-1 小行程定位實驗: 1×10-3 °/step、5×10-3 °/step旋轉控制運動 71
4-4-2 中行程定位實驗: 0.1 °/step、0.5 °/step 旋轉控制運動 74
4-4-3 長行程定位實驗: 1 °/step、5 °/step旋轉控制運動 77
4-4-4 定位實驗討論 81
4-5 小結 86
第五章 誤差分析 87
5-1 系統誤差 87
5-1-1 頻率混合所引入之非線性誤差 87
5-1-2 訊號斷點所引入之非線性誤差 90
5-1-3 綜合的非線性誤差 92
5-1-4 擬合曲線所引入之誤差 93
5-2 隨機誤差 96
5-2-1 環境振動 96
5-2-2 元件之熱膨脹 96
5-2-3 電子雜訊 97
5-3 小結 97
第六章 結論與未來展望 98
6-1 結論 98
6-2 未來展望 98
參考文獻 99
參考文獻 [1]. W. Gao, P. S. Huang, T. Yamada, and S. Kiyono, “A compact and sensitive two- dimensional angle probe for flatness measurement of large silicon wafers,” Precis. Eng. 26(4), 396-404 (2002).
[2]. P. S. Huang and X. Xu, “Design of an optical probe for surface profile measurement,” Opt. Eng. 38(7), 1223–1228 (1999).
[3]. S. T. Lin, K. T. Lin, and W. J. Syu, “Angular interferometer using calcite prism and rotating analyzer,” Opt. Commun. 277(2), 251–255 (2007).
[4]. S. Zhang, S. Kiyono, Y. Uda, and M. Mito, “Development of a measurement system of the angular profile of the polygon mirror surface,” Int. J. Jpn. Soc. Precis. Eng. 30(4), 349–350 (1996).
[5]. S. Kiyono, X. Shan, and H. Sato, “Development of an AFM using a critical angular sensor,” Int. J. Jpn. Soc. Precis. Eng. 27, 373–378 (1993).
[6]. Z. G. Lu, J. B. Tan, X. P. Zhao, T. Zheng, S. Lin, and L. Y. Zhang, “Measuring parallelism for two thin parallel beams based on autocollimation principle,” The 11th International Symposium of Measurement Technology and Intelligent Instruments, (Aachen, 2013), pp. 1–5.
[7]. M. Xiao, S. Jujo, S. Takahashi, and K. Takamasu, “Nanometer profile measurement of large aspheric optical surface by scanning deflectometry with rotatable devices: uncertainty propagation analysis and experiments,” Precis. Eng. 36(1), 91–96 (2012).
[8]. I. Weingärtner, M. Schulz, and C. Elster, “Novel scanning technique for ultra-precise measurement of topography,” Proc. SPIE 3782, 360–317 (1999).
[9]. W. Gao, Precision Nanometrology (Springer, 2010).
[10]. 潘同宣,「疊紋自動準直儀系統」,國立中央大學,碩士論文,民國102年。
[11]. A. Khiat, F. Lamarque, C. Prelle, N. Bencheikh, and E. Dupont, “High-resolution fibre-optic sensor for angular displacement measurements,” Meas. Sci. Technol. 21(2), 025306 (2010).
[12]. J. M. S. Sakamoto, C. Kitano, G. M. Pacheco, and B. R. Tittmann, “High sensitivity fiber optic angular displacement sensor and its application for detection of ultrasound,” Appl. Opt. 51(20), 484–485 (2012).
[13]. P. Shi and E. Stijns, “New optical method for measuring small-angle rotations,” Appl. Opt. 27(20), 4342–4346 (1988).
[14]. P. Shi and E. Stijns, “Improving the linearity of the Michelson interferometric angular measurement by a parameter compensation method,” Appl. Opt. 32(1), 44–51 (1993).
[15]. M. Ikram and G. Hussain, “Michelson interferometer for precision angle measurement,” Appl. Opt. 38(1), 113–120 (1999).
[16]. K. C. Fan, B. H. Liao, and F. Cheng, “Ultra-precision angle measurement based on Michelson interferometry,” J. CSME 34(1), 39–44 (2013).
[17]. D.F. Zheng, X.Z. Wang, and Z.L. Lia, “Accuracy analysis of parallel plate interferometer for angular displacement measurement,” Opt. Laser Technol. 40(1), 6–12 (2008).
[18]. D. Malacara and O. Harris, “Interferometric measurement of angles,” Appl. Opt. 9(7), 1630–1633 (1970).
[19]. H. G. Yun, S. H. Kim, H. S. Jeong, and K. H. Kim “Rotation angle measurement based on white-light interferometry with a standard optical flat,” Appl. Opt. 51(6), 720–725 (2012).
[20]. C. N. Zhang and X. Z. Wang, “Sinusoidal phase-modulating laser diode interferometer for measuring angular displacement,” Opt. Eng. 43(12), 3008–3013 (2004).
[21]. D. F. Zheng, X. Z. Wang, and O. Sasaki, “Parallel plate interferometer with a reflecting mirror for measuring angular displacement,” Opt. Rev. 14(5), 314–318 (2007).
[22]. S. T. Lin and W. J. Syu, “Heterodyne angular interferometer using a square prism,” Opt. Laser Eng. 47(1), 80–83 (2009).
[23]. P. S. Huang, S. Kiyono, and O. Kamada, “Angle measurement based on the internal-reflection effect: a new method,” Appl. Opt. 31(28), 6047–6055 (1992).
[24]. P. S. Huang and J. Ni, “Angle measurement based on the internal-reflection effect using elongated critical-angle prisms,” Appl. Opt. 35(13), 2239–2241 (1996).
[25]. M. H. Chiu and D. C. Su, “Angle measurement using total-internal-reflection heterodyne interferometry,” Opt. Eng. 36(6), 1750–1753 (1997).
[26]. M. H. Chiu and D. C. Su, “Improved technique for measuring small angles,” Appl. Opt. 36(28), 7104–7106 (1997).
[27]. M. H. Chiu, S. F. Wang, and R. S. Chang, “Instrument for measuring small angles by use of multiple total internal reflections in heterodyne interferometry,” Appl. Opt. 43(29), 5438–5442 (2004).
[28]. W. D. Zhou and L. L. Cai, “Interferometer for small-angle measurement based on total internal reflection,” Appl. Opt. 37(25), 5957–5963 (1998).
[29]. W. D. Zhou and L. L. Cai, “Improved angle interferometer based on total internal reflection,” Appl. Opt. 38(7), 1179–1185 (1999).
[30]. J. Guo, Z. Zhu, W. Deng, and S. Shen, “Angle measurement using surface-plasmon resonance heterodyne interferometry: a new method,” Opt. Eng. 37(11), 2998–3001 (1998).
[31]. S. F. Wang, M. H. Chiu, C. W. Lai, and R. S. Chang, “High-sensitivity small-angle sensor based on surface plasmon resonance technology and heterodyne interferometry,” Appl. Opt. 45(26), 6702–6707 (2006).
[32]. P. Paolino and L. Bellon, “Single beam interferometric angle measurement,” Opt. Commun. 280(1), 1–9 (2007).
[33]. Y. Jourlin, J. Jay, and O. Parriaux, “Compact diffractive interferometric displacement sensor in reflection,” Precis. Eng. 26(1), 1–6 (2002).
[34]. O. G. Helles, P. Benech, and R. Rimet, “Interometric displacement sensor made by integrated optics on glass,” Sens. Actuators 47(1), 478–481 (1995).
[35]. M. H. Chiu, J. Y. Lee, and D. C. Su, “Complex refractive-index measurement based on Fresnel’s equations and the uses of heterodyne interferometry,” Appl. Opt. 38(19), 4047–4062 (1999).
[36]. G. E. Sommargren, “Optical heterodyne profilometry,” Appl. Opt. 20(4), 610–622, (1981).
[37]. H. Taub and D. L. Schilling, Principles of communication system (McGraw-hill, 1986).
[38]. R. Crane, “Interference phase measurement,” Appl. Opt. 8(3), 538–542 (1969).
[39]. M. Sargent, E. Lamb, and R. L. Fork, “Theory of a Zeeman laser I,” Phy. Rev. Lett. 164(2), 436–449 (1967).
[40]. P. Zeeman, “The effect of magnetisation on the nature of light emitted by a substance,” Nature 55(1424), 347 (1987).
[41]. S. O. Kasap, Optoelectronics and photonics (Prenvice Hall Inc., 2001).
[42]. D. C. Su, M. H. Chiu, and C. D. Chen, “A heterodyne interferometer using an electro- optic modulator for measuring small displacements,” J. Opt. 27(19), 16–23, (1996).
[43]. J. Chen, Y. Ishii, and K. Murata, “Heterodyne interferometry with a frequency -modulated laser diode,” Appl. Opt. 27(1), 124–128 (1988).
[44]. 鍾於哲,「新型波長調制外差光源應用於位移量測」,國立中央大學,碩士論文,民國102年。
[45]. A. Yariv and P. Yeh, Optical wave in crystals (John wiley & sons, 1976).
[46]. S.O. Kasap著,黃俊達等譯,光電子與光子學-原理與應用 (台灣培生教育出版股份有限公司,2003)。
[47]. 鄭諭燦,「共路徑外差干涉儀順序量測雙折射晶體光學參數之設計與研究」,國立成功大學,碩士論文,民國102年。
[48]. Stanford research systems, Model SR850 DSP lock-in amplifier (1992).
[49]. K. Oka, M. Tsukadat, and Y. Ohisuka, “Real-time phase demodulator for optical heterodyne detection processes,” Meas. Sci. Technol. 2(2), 106–110 (1991).
[50]. C. M. Wu and R. D. Deslattes, “Analytical modeling of the periodic nonlinearity in heterodyne interferometry,” Appl. Opt. 37(28), 6696–6700 (1998).
[51]. C. M. Wu and C. S. Su, “Nonlinearity in measurements of length by optical interferometry,” Meas. Sci. Technol. 7(1), 62–68 (1996).
[52]. 蔡永勝,「單頻位移與傾角量測干涉儀」,國立中央大學,碩士論文,民國98年。
指導教授 李朱育(Ju-yi Lee) 審核日期 2014-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明