博碩士論文 101521036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.227.48.119
姓名 陳柏勳(Po-Hsun Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製
(Implementation on Fully Integrated Unilateralized CMOS Power Amplifiers for K-band Applications and Wideband Power Amplifier for V-band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製★ 應用於 5-11 GHz寬頻低雜訊放大器與5 GHz/11 GHz雙頻低雜訊放大器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文利用tsmc提供的0.18-μm CMOS 與90-nm CMOS製程設計功率放大器,在設計上分成兩部份,第一部份為tsmc 0.18-μm CMOS製程設計功率放大器以操作於K頻段功率放大器為主要目標。運用傳輸線型變壓器和磁耦合變壓器達到寬頻與低損耗的阻抗匹配,以及使用交錯耦合單向化電容抑制共源結構中由於閘-汲寄生電容(Cgd)所產生的密勒效應(Miller Effects),提高放大器電路的隔離度、穩定性和提升傳輸增益(S21),達成高隔離度和高增益之功率放大器;第二部份為全積體整合矽製程tsmc 90-nm CMOS設計於V頻段之寬頻功率放大器,使用T型傳輸線寬頻匹配技術,以及串接三級電晶體串疊架構達到寬頻功率放大器。
各電路特性量測如下:應用於K頻段之單向化差動功率放大器,傳輸增益(S21)為26.2 dB,反向傳輸增益(S12)低於-60 dB,飽和輸出功率為20.6 dBm,1-dB增益壓縮點輸出功率為17 .2 dBm,功率增進效率為16%, 3-dB頻寬為4 GHz(19.2 GHz至23.2 GHz);應用傳輸線型變壓器於K頻段高增益單向化功率放大器,傳輸增益(S21)為26.2 dB,反向傳輸增益(S12)低於-58 dB,飽和輸出功率為20.3 dBm,1-dB增益壓縮點輸出功率為17 .2 dBm,功率增進效率為24.1%, 3-dB頻寬為4.5 GHz(18.8 GHz至23.3 GHz);V頻段寬頻功率放大器,傳輸增益(S21)為17.8 dB,飽和輸出功率為11.4 dBm,1-dB增益壓縮點輸出功率為7.2 dBm,功率增進效率為4.4%, 3-dB頻寬(受限於量測儀器只能量測到67 GHz)為19.8 GHz(47.2 GHz至67 GHz)。
摘要(英) Both K-band and V-band fully integrated silicon-based power amplifiers are designed in this thesis, which are fabricated in tsmc 0.18-μm and 90-nm CMOS processes, respectively.
In the first part, the power amplifier adopted a neutralization topology to mitigate the intrinsic gate-drain feedback of each transistor to increase power gain and reverse isolation. The amplifier consists of three differential stages that are used transformers for impedance matching and inter-stage coupling. The 3-dB bandwidths are from 19.3 to 23.3 GHz with reverse isolation better than 60 dB. The amplifier achieves a power gain of 26.2 dB, a saturated output power of 20.6 dBm, an output 1-dB gain compression point of 17.2 dBm and a power added efficiency of 16.2%. The chip size is 1.11 mm2 with pad.
In the second part, we use transmission-line transformers for the input and output matching networks. The 3-dB bandwidths are from 18.8 to 23.5 GHz with reverse isolation better than 58 dB. The amplifier achieves a power gain of 26.2 dB, a saturated output power of 20.3 dBm, an output 1-dB gain compression point of 17.4 dBm and a power added efficiency of 24.1%. The chip size is 1.11 mm2 with pad.
In the third part, a wideband V-band power amplifier is implemented by adopting wideband matching network technique. The V-band power amplifier with wideband in tsmcTM 90-nm CMOS Technology achieves a power gain of 17.8 dB, a saturation output power of 11.4 dBm, an output power at 1-dB gain compression point of 7.2 dBm, and a power added efficiency of 4.4%. The 3-dB bandwidths are from 47.2 to 67 GHz. The chip size is 0.57 mm2 with pad.
關鍵字(中) ★ 功率放大器
★ 傳輸線型變壓器
★ 單向化電路
關鍵字(英) ★ Power Amplifier
★ TLT
★ Unilateralization
論文目次 摘要 ............................................................................................................................................ I
ABSTRACT ............................................................................................................................. II
誌 謝 ....................................................................................................................................... III
目錄 ......................................................................................................................................... IV
圖目錄 ..................................................................................................................................... VI
表目錄 ..................................................................................................................................... IX
第一章 緒論 ........................................................................................................................ 1
1-1 研究動機 .................................................................................................................... 1
1-2 研究成果 .................................................................................................................... 2
1-3 章節簡介 .................................................................................................................... 3
第二章 功率放大器 ............................................................................................................ 4
2-1 功率放大器簡介 ........................................................................................................ 4
2-2 功率放大器分類 ........................................................................................................ 8
第三章 應用單向化電路與變壓器之高隔離度功率放大器 .......................................... 10
3-1 磁耦合變壓器與傳輸線型變壓器 .......................................................................... 10
3-1-1 磁耦合變壓器簡介 .......................................................................................... 10
3-1-2 傳輸線型變壓器簡介 ...................................................................................... 15
3-2 單向化電路與中和化電路 ...................................................................................... 17
3-2-1 電路簡介 .......................................................................................................... 17
3-2-2 增益、隔離度與穩定度之改善 ...................................................................... 20
3-3 研究現況 .................................................................................................................. 22
3-4 應用於 K 頻段之單向化差動功率放大器 ............................................................. 25
3-4-1 應用於 K 頻段之單向化差動功率放大器設計 ............................................. 25
3-4-2 電路模擬與量測結果 ...................................................................................... 41
3-4-3 結果比較與討論 .............................................................................................. 48
3-5 應用傳輸線型變壓器於 K 頻段之單向化差動功率放大器 ................................. 50
3-5-1 應用傳輸線型變壓器於 K 頻段之單向化差動功率放大器設計 ................. 50
3-5-2 電路模擬與量測結果 ...................................................................................... 54
3-5-3 結果比較與討論 .............................................................................................. 61
第四章 應用 T 型傳輸線匹配之寬頻功率放大器 ......................................................... 66
4-1 研究現況 .................................................................................................................. 66
V

4-2 應用於 V 頻段之寬頻功率放大器 ......................................................................... 69
4-2-1 應用於 V 頻段之寬頻功率放大器設計 ......................................................... 69
4-2-2 電路模擬與量測結果 ...................................................................................... 75
4-2-3 結果比較與討論 .............................................................................................. 82
第五章 結論 ...................................................................................................................... 84
5-1 結論 .......................................................................................................................... 84
5-2 未來方向 .................................................................................................................. 85
參考文獻 .................................................................................................................................. 86
參考文獻 [1] J. R. Long, “Monolithic transformers for silicon RFIC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sept. 2000.
[2] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer–a new power-combining and impedance-transformation technique,“ IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316–331, Jan. 2002.
[3] P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, “A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS,” IEEE J. Solid-State Circuits,, vol. 43, no. 5, pp. 1054–1063, May 2008.
[4] K. H. An, O. Lee, H. Kim, D. H. Lee, J. Han, K. S. Yang, Y. Kim, J. J. Chang, W. Woo, C.-H. Lee, H. Kim, and J. Laskar, “Power-combining transformer techniques for fully-integrated cmos power amplifiers,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1064–1075, May 2008.
[5] C. L. Ruthroff, “Some broadband transformers,” Proc. IRE, vol. 47, pp. 1337–1342, Aug. 1959.
[6] G. Guanella, “New method of impedance matching in radio-frequency circuits,” Brown-Boveri Rev., vol. 31, pp. 327–329, Sept. 1944.
[7] H.-Y. Liao, M.-W. Pan and H.-K. Chiou, “Fully-integrated CMOS class-E power amplifier using broadband and low-loss 1:4 transmission-line transformer,” Electron. Lett., vol. 46, no. 22, pp. 1490–1491,Oct. 2010.
[8] H.-K. Chiou and H.-Y. Chung, “2.5–7 GHz single balanced mixer with integrated Ruthroff-type balun in 0.18 µm CMOS technology,” Electron. Lett., vol. 49, no. 7, pp. 474–475, Mar. 2013.
[9] C.-C. Cheng, “Neutralization and Unilateralization,” IEEE Trans. Circuits Systems, vol. 2, no. 2, pp. 138 –145, Jun. 1955.
[10] T. Yao, Gordon, M.Q., Tang, K.K.W., Yau, K.H.K., Ming-Ta Yang, Schvan, P., Voinigescu, S.P., “Algorithmic Design of CMOS LNAs and PAs for 60-GHz Radio, ” IEEE J. Solid-State Circuits, vol.42, no.5, pp.1044-1057, May 2007.
[11] Y.-N. Jen, J.-H. Tsai, C.-T. Peng, and T.-W. Huang, “A 20 to 24 GHz +16.8 dBm fully integrated power amplifier using 0.18-μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 42–44, Jan. 2009.
[12] J.-W. Lee and B.-S. Kim, “A K-band high-voltage four-way series-bias cascode power amplifier in 0.13 μm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 408–410, Jul. 2010.
[13] A. Vasylyev, P. Weger and W. Simburger, “Ultra-broadband 20.5–31 GHz mono lithically-integrated CMOS power amplifier,” Electron. Lett., vol. 41, no. 23, pp.1281–1282, Nov 2005.
[14] J.-W. Lee and S.-M. Heo, “A 27 GHz, 14 dBm CMOS power amplifier using 0.18 μm common-source MOSFETs,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 11, pp. 755–757, Nov . 2008.
[15] P.-C. Huang, J.-L. Kuo, Z.-M. Tsai, K.-Y. Lin and H. Wang, “A 22-dBm 24-GHz power amplifier using 0.18-μm CMOS technology,” in Proc. IEEE Int. Microw. Symp. Dig., May 23–28, 2010, pp. 248–251.
[16] S. Pinel, S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, and J. Laskar, “A 90 nm CMOS 60 GHz radio,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 3–7, 2008, pp. 130–131.
[17] J.-H. Tsai, Y.-L. Lee, T.-W. Huang, C.-M. Yu, J. G. J. Chern, “A 90-nm CMOS broadband and miniature Q-band balanced medium power amplifier,” in Proc. IEEE Int. Microw. Symp. Dig., Honolulu, HI, Jun. 3–8, 2007, pp.1129–1132.
[18] D. Chowdhury, P. Reynaert, and A. M. Niknejad,”A 60 GHz 1V + 12.3 dBm transformer -coupled wideband PA in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 3–7, 2008, pp. 560–635.
[19] D. Dawn, S. Sarkar, P. Sen, B. Perumana, M. Leung, N. Mallavarpu, S. Pinel, and J. Laskar, “60 GHz CMOS power amplifier with 20-dB-gain and 12dBm Psat, ” IEEE MTT-S Int. Microw. Symp. Dig, vol. 7, no. 12, pp.537-540, Jun. 2009.
[20] J.-L. Kuo, Z.-M. Tsai, K.-Y. Lin and H. Wang, “A 50 to 70 GHz Power Amplifier Using 90 nm CMOS Technology,” IEEE Micro. Wireless Compon. Lett., vol. 19, no. 1, Jan. 2009.
[21] N. Kurita and H. Kondoh, “60GHz and 80GHz wideband power amplifier MMICs in 90nm CMOS technology,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 7–9, 2009, pp.39–42.
[22] N. Kurita and H. Kondoh, “60 GHz and 80 GHz wide band power amplifier MMICs in 90 nm CMOS technology, ” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), vol. 7, no. 9, pp.39-42, Jun. 2009.
[23] C.-H. Lin and H.-Y. Chang, “A broadband injection-locking class-E power amplifier,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3232–3242, Oct. 2012
[24] B. Razavi, Design of analog CMOS integrated circuits, McGraw-Hill, 2001.
[25] 廖顯原,「應用於矽基功率放大器之傳輸線變壓器與穿透矽通孔之研究」,國立中央大學,博士論文,民國100年。
[26] 鄭淵勵,「 C/V頻段全積體整合矽製程之寬頻功率放大器研製」,國立中央大學,碩士論文,民國101年。
[27] 郭晉瑋,「應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製」,國立中央大學,碩士論文,民國102年。
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2014-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明