博碩士論文 100521126 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:88 、訪客IP:3.144.230.158
姓名 王暐筑(Wei-chu Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微波及毫米寬頻混波器暨低雜訊放大器之研製
(Design of Microwave/Millimeter-Wave Broadband Mixers and Low Noise Amplifiers)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究運用於微波及毫米波之射頻前端接收機中的低雜訊放大器與混波器積體電路。第二章為設計一單端寬頻混波器電路使用0.18 μm SiGe BiCMOS製程,所提出電路架構是利用混合型的NMOS-HBT(異質接面雙極性電晶體)達靈頓單元,比起傳統的達靈頓單元混波器可以有效地改善頻寬及轉換增益。混波器具有寬廣的射頻頻寬可從12到67 GHz,同時擁有較低的本地振盪驅動功率為2 dBm和最大的轉換增益為5 dB,並擁有最佳的性能指標,此混波器亦可當作解調器使用,其解調速度可達2 Gbps以上。
在第三章,利用砷化鎵異質接面雙極性電晶體(HBT)及高速電子遷移率電晶體(HEMT)製程技術來實現吉伯爾單元混波器,並運用電感補償技巧來改善高頻響應,同時量測驗證開關級與轉導級在不同電晶體組合下的轉換增益及頻寬結果,在四種吉伯爾混波器組合中,異質接面雙極性電晶體-高速電子遷移率電晶體吉伯爾混波器擁有最寬的頻寬及最佳的增益頻寬乘積。另外,此電路利用功率分配器及90度耦合器組成一正交混波器,進一步進行數位解調變測試,其量測到的QPSK解調變訊號頻譜的誤差向量振幅為7.4 %,並成功驗證到2.5 Gbps眼圖。
在第四章,使用0.15 μm GaAs pHEMT及0.1 μm GaAs pHEMT製程開發設計Q頻段低雜訊放大器,其可應用於寬頻帶通訊系統和電波遙測接收器上,在0.15 μm製程中低雜訊放大器頻率為21.8到45.5 GHz間,其小訊號增益高於19.5 dB,而頻率為37 GHz時有最小雜訊指數為2.3 dB,增益頻寬乘積(GBPA)為266 GHz。在0.1 μm製程中頻率為26.8到50.4 GHz間,其小訊號增益高於21.6 dB,而頻率為36 GHz時有最小雜訊指數為2.8 dB,增益頻寬乘積為395 GHz,兩者晶片面積皆為2×1 mm2。本低雜訊放大器電路皆具有寬頻、高增益、低雜訊指數及緊密的電路佈局,此外其同時擁有Q頻段低雜訊放大器中最佳的增益頻寬乘積。
最後,總結本篇論文所提出的電路設計與未來可改善的研究方向。
摘要(英) Several low noise amplifiers and mixers used in microwave and millimeter-wave radio front-end receiver are presented in this thesis. A broadband single-ended mixer using 0.18 μm SiGe BiCMOS process is presented in Chapter 2. A hybrid modified NMOS-HBT Darlington cell is proposed for the circuit design. The bandwidth and conversion are further improved as compared to the conventional Darlington cell mixer. The mixer exhibits a broad RF bandwidth of from 25 to 70 GHz with a lower driving LO power of 2 dBm, a maximum conversion gain of 5 dB. Moreover, this work has the best figure of merit, and the mixer can be performed a broadband digital demodulator with a data rate of up to 2 Gbps.
Four Gilbert-cell mixers are implemented in GaAs 2 μm heterojunction bipolar transistor (HBT) and 0.5 μm high electron mobility transistor (HEMT) process are presented in Chapter 3. These Gilbert-cell mixers employ an inductive peaking technique to improve the high frequency response. The switch stage and the transconductance stage are designed using variable transistor combinations to enhance the conversion gain and bandwidth. Among these configurations, the HBT-HEMT Gilbert-cell mixer exhibits the best gain-bandwidth product and the widest bandwidth. Moreover, an IQ mixer is developed using the HBT-HEMT Gilbert-cell mixer, a power divider, and a 90。Hybrid couplers. For the QPSK demodulation, the measured error vector magnitude (EVM) is less than 7.4%. The measured eye diagram is evaluated up to 2.5 Gbps.
Two Q-band low noise amplifiers using 0.15 μm GaAs pHEMT (LNA1) and 0.1 μm GaAs pHEMT (LNA2) process for broadband communication and radio astronomy applications are presented in Chapter 4. Between 21.8 and 45.5 GHz, the LNA1 features a small signal gain of higher than 19.5 dB, a minimum noise figure of 2.3 dB at 37 GHz, and a gain-bandwidth product (GBPA) of 266 GHz. Between 26.8 and 50.4 GHz, the LNA2 features a small signal gain of higher than 21.6 dB, a minimum noise figure of 2.8 dB at 36 GHz, and a GBPA of 395 GHz. The chip sizes of the LNA1 and LNA2 are both 2×1 mm2. The LNAs demonstrate broad bandwidth, high gain, low noise figure, and compact chip size. Moreover, this work demonstrates the highest GBPA among all the reported Q-band LNAs.
Finally, the conclusions and future works are addressed in Chapter 5.
關鍵字(中) ★ 寬頻混波器
★ 低雜訊放大器
★ 達靈頓
★ 吉伯爾單元
★ 砷化鎵
關鍵字(英) ★ broadband mixer
★ low noise amplifier
★ Darlington
★ Gilbert-cell
★ GaAs
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 VI
圖目錄 IX
表目錄 XVI
第一章 緒論 1
1.1 研究動機及背景 1
1.2 相關研究與發展 1
1.3 論文貢獻 3
1.4 論文架構 3
第二章 單端寬頻混波器 4
2.1 簡介 4
2.1.1 混波器介紹 4
2.1.2 重要參數介紹 6
2.2 製程簡介 8
2.2.1 台積電0.18 μm SiGe BiCMOS製程 8
2.3 電路設計與分析 9
2.4 電路模擬與量測 15
2.5 數位訊號解調變之應用 22
2.5.1 介紹 22
2.5.2 量測架設 23
2.5.3 量測結果與討論 24
2.6 總結 25
第三章 雙平衡吉伯爾寬頻混波器 28
3.1 簡介 28
3.2 製程簡介 28
3.2.1 穩懋 2 μm / 0.5 μm GaAs HBT-HEMT製程 28
3.3 電路設計與分析 29
3.3.1 HBT-HBT吉伯爾混波器 36
3.3.2 HEMT-HBT吉伯爾混波器 38
3.3.3 HEMT-HEMT吉伯爾混波器 41
3.3.4 HBT-HEMT吉伯爾混波器 43
3.4 電路模擬與量測 50
3.4.1 HBT-HBT吉伯爾混波器 51
3.4.2 HEMT-HBT吉伯爾混波器 59
3.4.3 HEMT-HEMT吉伯爾混波器 67
3.4.4 HBT-HEMT吉伯爾混波器 75
3.4.4.1 旁波帶抑制量 84
3.4.4.2 BPSK眼圖解調變 86
3.4.4.2 數位解調變 89
3.5 總結 93
第四章 Q頻帶低雜訊放大器 98
4.1 低雜訊放大器簡介 98
4.1.1 雜訊指數(Noise Figure)介紹 98
4.1.2 重要參數介紹 100
4.2 製程簡介 102
4.2.1 穩懋 0.15 μm GaAs pHEMT Low Noise 102
4.2.2 穩懋 0.1 μm GaAs pHEMT 102
4.3 電路設計架構 103
4.3.1 穩懋 0.15 μm GaAs pHEMT Low Noise 104
4.3.2 穩懋 0.1 μm GaAs pHEMT 110
4.4 電路模擬與量測 116
4.4.1 穩懋 0.15 μm GaAs pHEMT Low Noise 117
4.4.2 穩懋 0.1 μm GaAs pHEMT 121
4.5 總結 128
第五章 結論 134
參考文獻 136
參考文獻 [1] H.-Y. Yang, J.-H. Tsai, C.-H. Wang, C.-S Lin, W.-H. Lin, K.-Y. Lin, T.-W. Huang, and H. Wang, “Design and analysis of a 0.8-77.5-GHz ultra-broadband distributed drain mixer using 0.13-μm CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 562-572, Mar. 2009.
[2] K.-L. Deng, and H. Wang, “A 3-33 GHz PHEMT MMIC distributed drain mixer,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., May 2002, pp. 151-154.
[3] J.-C. Chien and L.-H. Lu, “40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2715-2725, Dec. 2007.
[4] H.-Y. Chang, S.-H. Weng, and C.-C. Chiong, “A 30-50 GHz wide modulation bandwidth bidirectional BPSK demodulator / modulator with low LO power,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 332-334, May. 2009.
[5] T.-Y. Yang, “Microwave / millimeter-wave broadband and low-loss CMOS balun design and applications,” Ph.D. dissertation, Elect. Eng., National Central University, Taiwan, 2008.
[6] J.-H. Tsai, and C.-C. Wang “A 25-55 GHz CMOS sub-harmonic direct-conversion mixer for BPSK demodulator,” in Asia-Pacific Microw. Conf., Dec. 2008, pp. 1-4.
[7] C.-S. Lin, H.-Y. Chang, P.-S. Wu, K.-Y. Lin, and H. Wang, “A 35-50 GHz IQ-demodulator in 0.13-μm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1397-1400.
[8] J.-H. Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q modulator and demodulator using modified Gilbert-cell mixer,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1350-1360, May 2011.
[9] C.-Y. Wang and J.-H. Tsai, “A 51 to 65 GHz low-power bulk-driven mixer using 0.13 um CMOS technology,” IEEE Microw. and Wireless Compon. Lett., vol. 19, no.8, pp. 521–523, Aug. 2009.
[10] J.-H. Tsai, P.-S. Wu, C.-S. Lin, T.-W. Huang, J. G. J. Chern, and W.-C. Huang “A 25–75 GHz broadband Gilbert-cell mixer using 90-nm CMOS technology,” IEEE Microw. and Wireless Compon. Lett., vol. 17, no. 4, Apr. 2007.
[11] Y.-S. Lin, W.-C. Wen, and C.-C. Wang, “13.6 mW 79 GHz CMOS up-conversion mixer with 2.1 dB gain and 35.9 dB LO-RF isolation,” IEEE Microw. and Wireless Compon. Lett., vol. 24, no.2, pp. 126–128, Feb. 2014.
[12] J. Shi, L. Li and T.-J. Cui, “A 60-GHz broadband Gilbert-cell down conversion mixer in a 65-nm CMOS,” IEEE Int. Conf. on Electron Devices and Solid-State Circuits, pp. 1–2, Jun. 2013.
[13] Tom K. Johansen, Jens Vidkjær, and Viktor Krozer, “Analysis and design of wide-band SiGe HBT active mixers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2389–2397, May 2005.
[14] S. Hackl, J. Beck, M. Wurzer, and A.L. Scholta, “40 GHz monolithic integrated mixer in SiGe bipolar technology,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 1241–1244, May 2002.
[15] M.-D. Tsai, C.-S. Lin, C.-H. Wang, C.-H. Lien, and H. Wang, “A 0.1–23-GHz SiGe BiCMOS analog multiplier and mixer based on attenuation-compensation technique,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2004, pp.417–420.
[16] A. Y.-K. Chen, Y. Baeyens, Y.-K. Chen, and J. Lin, “An 80 GHz high gain double-balanced active up-conversion mixer using 0.18 um SiGe BiCMOS technology,” IEEE Microw. and Wireless Compon. Lett., vol. 21, no.6, pp. 326–328, Jun. 2011.
[17] B. Tzeng, C. H. Lien, H. Wang, Y. C. Wang, P. C. Chao, and C. H. Chen, “A 1–17-GHz InGaP-GaAs HBT MMIC analog multiplier and mixer with broad-band input-matching networks,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 2564–2568, Nov. 2002.
[18] S.-C. Tseng, C.C. Meng, and C.-K. Wu, “GaInP/GaAs HBT wideband transformer Gilbert downconverter with low voltage supply,” Electron. Lett., vol. 44, no. 2, pp. 127–128, Jan. 2008.
[19] A. Khy and B. Huyart ,“A (35 – 45) GHz low power direct-conversion Gilbert-cell mixer in 0.13μm GaAs PHEMT,” in Proc. 40th Eur. Solid-State Circuits Conf., Sep. 2010, pp.1058−1061.
[20] H.-C. Chiu, “Active wideband down-converter for microwave and millimeter-wave applications,” Master. Thesis, Elect. Eng., National Central University, Taiwan, 2011.
[21] A. P. Freundorfer, Y. Jamani and C. Falt, “A Ka-band GaInP/GaAs HBT four-stage LNA,” IEEE Microw. and Millimeter-Wave Monolithic Circuits Symp. Dig., Jun. 1996, pp. 141–144.
[22] C. Pobanz, M. Matloubian, L. Nguyen, Michael Case, Ming Hu, M. Lui, C. Hooper, and P. Janke, “A high gain, low power MMIC LNA for Ka-band using InP HEMTs,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 1999, pp. 149–152.
[23] R. Isobe, C. Wong, A. Potter, T. Long, M. Delaney, R. Rhodes, D. Jang, N. Loi, and Le Minh, “Q-band v-band MMIC chip set using 0.1 μm millimeter-wave low noise InP HEMTs,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1995, vol. 3, pp. 1133–1136.
[24] L. Tran, R. Isobe, M. Delaney, R. Rhodes, D. Jang, J. Brown, L. Nguyen, M. Le, M. Thompson, and T. Liu, “High performance, high yield millimeter-wave MMIC LNAs using InP HEMTs,” IEEE Microw. and Millimeter-Wave Monolithic Circuits Symp. Dig., Jun. 1996, vol. 1, pp. 133–136.
[25] M. V. Aust, and et al, “Ultra low noise Q-band monolithic amplifiers using InP- and GaAs-Based 0.l μm HEMT technologies,” IEEE Microw. and Millimeter-Wave Monolithic Circuits Symp. Dig., Jun. 1996, pp. 89–92.
[26] S. Long, L. Escotte, J. Graffeuill, P. Fellon and D. Roques, “Ka-band coplanar low-noise amplifier design with power PHEMTs,” Eur. Microw. Conf., pp. 17–20, Oct. 2003.
[27] K. H. G. Duh, S. M. J. Liu, S. C. Wang, P. Ho, and P. C. Chao, “High performance Q-band 0.15 μm InGaAs HEMT MMIC LNA,” IEEE Microw. and Millimeter-Wave Monolithic Circuits Symp. Dig., Jun. 1993, pp. 99–102.
[28] Y. Mimino, K. Nakamura, Y. Hasegawa, Y. Aoki, S. Kuroda, and T. Tokumitsu, “A 60 GHz millimeter-wave MMIC chipset for broadband wireless access system front-end,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, vol. 3, pp. 1721–1724.
[29] P.-H. Ho, C.-C. Chiong, and H. Wang, “An ultra low-power Q-band LNA with 50% bandwidth in WIN GaAs 0.1-μm pHEMT process,” in Asia-Pacific Microw. Conf., Nov. 2013, pp. 713–715.
[30] G. Wolf, S. Demichel, R. Leblanc, F. Blache, R. Lefevre, G. Dambrine, and H. Happy, “A metamorphic GaAs HEMT distributed amplifier with 50 GHz bandwidth and low noise for 40 Gbits/s optical receivers,” Gallium Arsenide and Other Semiconductor Application Symp., Oct. 2005, pp. 93−95.
[31] C. C. Yang, B. Nelson, W. Jones, and B. Allen, “A cryogenically-cooled wide-band HEMT MMIC low-noise amplifier,” IEEE Microw. Guided Wave Lett., vol. 2, pp. 58-60, Feb. 1992.
[32] T. Padmaja, R. S. N. Gongo, P. Ratna, P. S. Vasu, J. S. Babu, and V. S. R. Kirty, “A 18-40 GHz Monolithic GaAs pHEMT low noise amplifier,” in International Conf. on Microw.-08, pp. 309-311, Nov. 2008.
[33] S.-H. Weng, W.-C. Wang, H.-Y. Chang, C.-C. Chiong, and M.-T. Chen, “ A cryogenic 30-50 GHz balanced low noise amplifier using 0.15-μm MHEMT process for radio astronomy applications,” IEEE Radio-Freq. Integr. Tech., pp. 177–179, Nov. 2012.
[34] B. A. Floyd, L. Shi, Y. Taur, I. Lagnado, and K. K. O, “A 23.8-GHz SOI CMOS tuned amplifier,” IEEE Trans. Microw. Theory Tech., vol. 50, pp. 2193–2195, Sep. 2002.
[35] K.-W. Yu, Y.-L. Lu, D. C. Chang, V. Liang, and M. F. Chang, “K-band low-noise amplifiers using 0.18 μm CMOS technology”, IEEE Microw. and Wireless Compon. Lett., vol. 14, no. 3, pp. 106–108, Mar. 2004.
[36] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. Yang, P. Schvan, and S. P. Voinigescu “ Algorithmic design of CMOS LNAs and PAs for 60-GHz radio ,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May. 2007.
[37] C.-C. Huang, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, "Low-power, high-gain V-band CMOS low noise amplifier for microwave radiometer applications," IEEE Microw. and Wireless Compon. Lett., vol. 21, no. 2, pp. 104–106, Feb. 2011.
[38] B. Razavi, RF Microelectronics, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 2011.
[39] F. Eshghabadi, M. Dousti, F. Temcamani, B. Delacressoniere, and J. L. Gautier, “A 2.4-GHz front-end system design for WLAN applications using 0.35μm SiGe BiCMOS technology,” in Proc. IEEE 3rd Int. Conf. ICTTA, Damascus, Syria, Apr. 2008, pp. 1-5.
[40] S.-H. Weng, H.-Y. Chang, C.-C. Chiong, and Y.-C. Wang, “Gain-bandwidth analysis of broadband Darlington amplifiers in HBT-HEMT process,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 11, pp. 3458-3473, Nov. 2012.
[41] “Sonnet® User’s Guide,” 13th ed. Sonnet Softw. Inc., North Syracuse, NY, 2009.
[42] C.-H. Shen, “Design of broadband low-loss RF CMOS resistive-ring mixer,” Master. Thesis, Elect. Eng., National Central University, Taiwan, 2009.
[43] J.-H. Tsai, and T.-W. Huang, “35-65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2075−2085, Oct. 2007.
[44] W.-H. Lin, W.-L. Chang, J.-H. Tsai, and T.-W. Huang, “A 30-60GHz CMOS sub-harmonic IQ de/modulator for high data-rate communication system applications,” in IEEE Radio Wireless Symp., Jan. 2009, pp.462−465.
[45] C.-S. Lin, H.-Y. Chang, P.-S. Wu, K.-Y. Lin, and H. Wang, “A 30–50 GHz IQ-demodulator in 0.13-μm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 1397–1400.
[46] P. Lindberg, E. Ojefors, E. Sonmez, and A. Rydberg, “A SiGe HBT 24 GHz sub-harmonic direct-conversion IQ-demodulator,” in Proc. Silicon Monolithic Integr. Circuits RF Syst. Top. Meeting, Sep. 8–10, 2004, pp. 247–250.
[47] G. K. W. Hamed, A. P. Freundorfer, Y. M. M. Antar, P. Frank, and D. Sawatzky, “A high-bit rate Ka-band direct conversion QPSK demodulator,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 365–367, May 2008.
[48] Y.-H. Lin, J.-L. Kuo, and H. Wang, “A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique,” Eur. Microw. Conf., pp. 365–368, Oct. 2012.
[49] S.-H. Weng, C.-H. Shen, and H.-Y. Chang, “A wide modulation bandwidth bidirectional CMOS IQ modulator/demodulator for microwave and millimeter-wave gigabit applications,” Eur. Microw. Conf., pp. 8–11, Oct. 2012.
[50] M. Tarenghi, “The atacama large millimeter/submillimeter array: overview & status,” Astrophysics and Space Science, vol. 313, pp. 1−7, Jan. 2008.
[51] Available: http://www.vsop.isas.ac.jp/vsop2e/
[52] N. Shiramizu, T. Masuda, M. Tanabe, and K. Washio, “A 3-10 GHz bandwidth low-noise and low-power amplifier for full-band UWB communications in 0.25-μm SiGe BiCMOS technology,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2005, pp. 39–42.
[53] K.-L. Deng, T.-W. Huang, and H. Wang “Design and analysis of novel highgain and broad-band GaAs pHEMT MMIC distributed amplifiers with traveling-wave gain stages,” IEEE Trans. Microw. Theory Tech., vol.51, pp. 2188−2196, Nov. 2003.
[54] G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1996, ch. 4.
指導教授 張鴻埜(Hong-yeh Chang) 審核日期 2014-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明