博碩士論文 995301015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:119 、訪客IP:52.15.158.238
姓名 許志維(Chih-wei Hsu)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 應用於 K-band 之倍頻器設計
(Design of Frequency Multipliers for K-band Application)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要以標準台積電(TSMC)SiGe BiCMOS與0.18 um CMOS製程技術,並利用三種不同的電路架構來設計應用於K-band的倍頻器。第一個設計以台積電0.18 um SiGe BiCMOS製程實現一新型的平衡式架構8-24 GHz三倍頻器,此倍頻器於輸出端利用主動式巴倫電路來改善傳統平衡式架構因使用耦合器使得佈局面積過大且限制了調整相位延遲的缺點。第二個設計以台積電0.18 um CMOS製程實現應用主動式轉導提昇共閘極電路技術的12-24 GHz二倍頻器,倍頻器電路以共閘極為主要設計架構,並以一共源極放大器來實現此一轉導提昇級,以提升倍頻器的轉換增益。第三個設計同以台積電0.18 um CMOS製程實現電流再利用電路技術的8-24 GHz三倍頻器,電路中於第二級NMOS電晶體的源極端加入一適當電阻接地以提供而外的電流路徑,如此改善倍頻器在非常小功率輸入條件下的轉換增益,且避免電流的浪費。
摘要(英) This thesis presents the design of K-band frequency multipliers by three circuit topologies in TSMC standard SiGe BiCMOS and 0.18 um CMOS process. In the first design of thesis, we present a new configuration of a balanced 8-24 GHz tripler in TSMC SiGe BiCMOS process. Because of the conventional balanced frequency multipliers usually used couplers and the couplers are too large in dimensions and also limit the phase delay function. So to improve this, the output part of this frequency tripler has been changed by an active balun to instead of the coupler. In the second design of thesis, we present an active Gm-boosted common-gate 12-24 GHz doubler in TSMC 0.18 um CMOS process, the design employs a common-gate configuration and utilizing the common-source configuration as Gm-boosted stage to raise the conversion gain of the doubler. In the third design of thesis, we present an 8-24 GHz tripler with current-reuse technique in TSMC 0.18 um CMOS process, the circuit of tripler places a bypass resistor between common ground and the source node of the second stage NMOS transistor to provide an additional current path and thus improving conversion gain and input power level while saving the waste of current consumption.
關鍵字(中) ★ 倍頻器
★ 主動式巴倫電路
★ 轉導提升
★ 電流再利用式
關鍵字(英) ★ K-band
★ tripler
★ doubler
★ active balun
★ Gm-boosted
★ current reuse
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 研究動機與背景 1
1.2 相關研究與發展 1
1.3 論文架構 2
第二章 倍頻器基本原理與設計方法 3
2.1 簡介 3
2.2 倍頻器各重要參數介紹說明 3
2.3 倍頻器的組成考量與架構簡介 5
2.3.1 被動式倍頻器(Passive Frequency Multipliers) 5
2.3.2 主動式倍頻器(Active Frequency Multipliers) 9
2.4 討論 11
第三章 8-24 GHz主動平衡式三倍頻器之設計 13
3.1 前言 13
3.2 研究動機與方法 13
3.3 電路架構與設計之模擬分析 15
3.4 模擬與量測結果 19
3.5 結果與討論 26
3.6 結論 30
第四章 12-24 GHz主動式轉導提昇共閘極倍頻器電路設計 31
4.1 前言 31
4.2 研究動機與方法 31
4.3 電路設計與架構分析 32
4.4 模擬與量測結果 34
4.5 結果與討論 42
4.6 結論 43
第五章 8-24 GHz電流再利用式三倍頻器之設計 44
5.1 前言 44
5.2 研究動機與方法 44
5.3 電路設計與架構分析 45
5.4 模擬與量測結果 49
5.5 結果與討論 56
5.6 結論 56
第六章 結論 58
參考文獻 60
參考文獻 參考文獻
[1]R. Adler, “A study of Locking Phenomena in Oscillators,” Proc. IEEE, vol. 61, pp. 1380-1385, Oct. 1973.
[2]Kenji Kamogawa, Tsuneo Tokumitsu, and Masayoshi Aikawa, “Injection-Locked Oscillator Chain: A Possible Solution to Millimeter-Wave MMIC Synthesizers,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1587-1584, Sep. 1997.
[3]Ali Boudiaf, Didier Bachelet, and Christian Rumelhard, “A High-Efficiency and Low-Phase Noise 38-GHz pHEMT MMIC Tripler,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2546-2553, Dec. 2000.
[4]Wei L. Chan, and John R. Long, “A 56-65 GHz Injection-Locked Frequency Tripler With Quadrature Outputs in 90-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[5]Masoud Zargari, et al., “A 5-GHz CMOS Transceiver for IEEE 802.11a Wireless LAN Systems,” IEEE Journal of Solid-State Circuits, 37, no. 12, pp. 1688-1694 Dec. 2002.
[6]Scott K.Reynolds, et al., “A Silicon 60-GHz Receiver and Transmitter Chipset for Broadband Communications,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2820-2831, Dec. 2006.
[7]K. Benson, and M. A. Frerking, “Theoretical Efficiency for Triplers Using Nonideal Varistor Diodes at Submillimeter Wavelengths,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 12, pp. 1367-1374, Dec. 1985.
[8]C. C. H. Tang, “An Exact Analysis of Varactor Frequency Multipliers,” IEEE Trans. Microw. Theory Tech., vol. 14, no. 4, pp. 210-212, Apr. 1966.
[9] D. Shim, S. Sankaran, and K. K. O, “Complementary Antiparallel Schottky Barrier Diode Pair in a 0.13-μm Logic CMOS Technology,” IEEE Electron Device Letters, vol. 29, no. 6, pp 606-608, Jun. 2008.
[10]Bitzer Rainer, “Wideband Balanced Frequency Doublers - A Proposed Novel Planar MIC Structure,” IEEE Microwave Conference, 1991. 21st European, vol. 1, pp. 333-338, Sept. 1991.
[11]Yang Li, Fan Yong, Zhong Rui He, “Investigation and design of K-band broadband frequency doubler,” IEEE Microwave Conference, 2008 China-Japan Joint, Sept. 2008, pp. 107-109.
[12]S. A. Mass, Y. Ryu, “A Broadband, Planar, Monolithic Resistive Frequency Doubler,” IEEE MTT-S Int. Symp. Dig., pp. 175-178, 1994.
[13]ZVI NATIVE, “The Application of a Frequency Multiplier Design Method to the Design of Microwave Parametric Dividers,” IEEE Trans. Microw. Theory Tech., vol. MTT 35, no. 2, pp. 189-194, Feb. 1987.
[14]Chuying Mao, et al., “125-GHz Diode Frequency Doubler in 0.13-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1531–1538, May 2009.
[15]J.-C. Chiu, J.-C. Chiu, C.-P. Chang, M.-P. Houng, and Y.-H. Wang, “A 12–36 GHz PHEMT MMIC Balanced Frequency Tripler,” IEEE Microw. Wireless Compon. Lett, vol. 16, no. 1, pp. 19-21, Jan. 2006.
[16]Cuong Huynh and Cam Nguyen,, “New Ultra-High-Isolation RF Switch Architecture
and Its Use for a 10-38 GHz 0.18-μm BiCMOS Ultra-Wideband Switch,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 345-353, February 2011.
[17]Bo-Jiun Huang, Bo-Jr Huang, Kun-You Lin, and Huei Wang, “A 2-40 GHz active balun using 0.13-μm CMOS process,” IEEE Microw Wireless Compon. Lett., vol. 19, no. 3, pp. 164-166, Mar. 2009.
[18]H. Fudem and E. C. Niehenke, “Novel Millimeter Wave Active MMIC Triplers,” in
IEEE MTT-S Int. Dig., vol. 2, 1998, pp. 387-390.
[19]C. Baer, et al., “A Passive 8 to 24 GHz Frequency TripIer based on Microstrip Line Circuits and Schottky Diodes,” Proceedings of Asia-Pacific Microwave Conference 2010, pp. 706-709.
[20]Mina Danesh, et al, “Differential VCO and Frequency Tripler using SiGe HBTs for the 24 GHz ISM Band,” IEEE Radio Frequency Integrated Circuit (RFIC) Symposium 8-10 Jun. 2003
[21]Fan-Hsiu Huang, et al., “A 20-to-60 GHz CMOS Frequency Tripler based on a BPSK Modulator,” Proceedings of Asia-Pacific Microwave Conference, 2009.
[22]You Zhung, et al, “A Broadband CMOS Frequency Tripler Using a Third-Harmonic Enhanced Technique,” IEEE J. Solid-State Circuits, vol. 42, no. 10, Oct. 2007
[23]B.-J. Huang, Z.-M. Tsai, B.-J. Huang, K.-Y. Lin, H. Wang and C.-C. Chiong, “A GaAs-based HBT 31-GHz frequency doubler with an on-chip voltage,” 2008 Asia Pacific Microw. Conf. Dig., Dec. 2008, pp.1-4.
[24]Y. Liu, T. Yang, Z. Yang and J. Chen, “A 3-50 GHz Ultra-Wideband PHEMT MMIC Balanced Frequency Doubler,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 629-631, Sep. 2008.
[25]K.-Y. Lin, J.-Y. Huang, J.-L. Kuo, C.-S. Lin, and H. Wang, “A 14-23 GHz CMOS MMIC distributed doubler with a 22-dB fundamental rejection,” in IEEE MTTS Int. Micro. Symp. Dig., Jun. 2008, pp. 1477-1480.
[26]K.-Y. Lin, J.-Y. Huang and S.-C. Shin “A K-band CMOS distributed doubler with current-reuse technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 308-311, May 2009.
[27]T. Choet al., “A single-chip CMOS direct-conversion transceiver for 900 MHz spread-spectrum digital cordless phones,” in Int. Solid-State Circuits Conf. Tech. Dig., Feb. 1999, pp. 228-229.
[28]W. Zhuo et al., “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 875-879, Dec. 2005.
[29]X. Liet al.,“Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, Dec. 2005.
[30]X. Fan et al., “A noise reduction and linearity improvement technique for a differential cascode LNA,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588-599, Mar. 2008.
[31]I. R. Chamas and S. Raman, “Analysis, Design, and X-band Implementation of a Self-Biased Active Feedback Gm-Boosted Common-Gate CMOS LNA,” IEEE Trans. Microw. Theory Tech. , vol. 57, no. 3, pp. 542-551, Mar. 2009.
[32]Z. Jian, B. Mingquan, D. Kuylenstierna, L. Szhau, and H. Zirath, “Broadband Gm-boosted differential HBT doublers with transformer balun,” IEEE Trans. Microw. Theory Tech. , vol. 59, no. 11, pp. 2953-2960, Nov. 2011.
[33]Shao Wei Lin et al, “A Compact Size Ka Band pHEMT MMIC Frequency Tripler with CPW Technology,” Proceedings of Asia-Pacific Microwave Conference, 2007.
[34] Jung-Hau Chen and Huei Wang, “A High Gain, High Power K-Band Frequency Doubler in 0.18 μm CMOS Process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 522-524, Sept. 2010.
[35]S. H. Weng, G. Y Chen, et al., “A K-Band High Efficiency High Output Power CG-CS Frequency Doubler in 0.5-μm GaAs E/D-Mode PHEMT Process,” Proceedings of Asia-Pacific Microwave Conference, 2011.
[36]Stephen A. Mass,“Nonlinear Microwave and RF Circuits,” Artech House Publishers 2nd.Edition, Jan. 2003.
[37]David M. Pozar著,微波工程,郭仁財譯,高立書局,臺北縣,民國九十五年。
[38]B. Razavi, “RF Microelectronics”, Prentice Hall PTR, NJ, 1998.
[39]Kazuya Yamamoto, “A 1.8-V Operation 5-GHz-Band CMOS Frequency Doubler Using Current-Reuse Circuit Design Technique,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1288–1295, Mar. 2005.
指導教授 辛裕明(Yue-ming Hsin) 審核日期 2014-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明