參考文獻 |
參考文獻
[1]R. Adler, “A study of Locking Phenomena in Oscillators,” Proc. IEEE, vol. 61, pp. 1380-1385, Oct. 1973.
[2]Kenji Kamogawa, Tsuneo Tokumitsu, and Masayoshi Aikawa, “Injection-Locked Oscillator Chain: A Possible Solution to Millimeter-Wave MMIC Synthesizers,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1587-1584, Sep. 1997.
[3]Ali Boudiaf, Didier Bachelet, and Christian Rumelhard, “A High-Efficiency and Low-Phase Noise 38-GHz pHEMT MMIC Tripler,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2546-2553, Dec. 2000.
[4]Wei L. Chan, and John R. Long, “A 56-65 GHz Injection-Locked Frequency Tripler With Quadrature Outputs in 90-nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[5]Masoud Zargari, et al., “A 5-GHz CMOS Transceiver for IEEE 802.11a Wireless LAN Systems,” IEEE Journal of Solid-State Circuits, 37, no. 12, pp. 1688-1694 Dec. 2002.
[6]Scott K.Reynolds, et al., “A Silicon 60-GHz Receiver and Transmitter Chipset for Broadband Communications,” IEEE Journal of Solid-State Circuits, vol. 41, no. 12, pp. 2820-2831, Dec. 2006.
[7]K. Benson, and M. A. Frerking, “Theoretical Efficiency for Triplers Using Nonideal Varistor Diodes at Submillimeter Wavelengths,” IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 12, pp. 1367-1374, Dec. 1985.
[8]C. C. H. Tang, “An Exact Analysis of Varactor Frequency Multipliers,” IEEE Trans. Microw. Theory Tech., vol. 14, no. 4, pp. 210-212, Apr. 1966.
[9] D. Shim, S. Sankaran, and K. K. O, “Complementary Antiparallel Schottky Barrier Diode Pair in a 0.13-μm Logic CMOS Technology,” IEEE Electron Device Letters, vol. 29, no. 6, pp 606-608, Jun. 2008.
[10]Bitzer Rainer, “Wideband Balanced Frequency Doublers - A Proposed Novel Planar MIC Structure,” IEEE Microwave Conference, 1991. 21st European, vol. 1, pp. 333-338, Sept. 1991.
[11]Yang Li, Fan Yong, Zhong Rui He, “Investigation and design of K-band broadband frequency doubler,” IEEE Microwave Conference, 2008 China-Japan Joint, Sept. 2008, pp. 107-109.
[12]S. A. Mass, Y. Ryu, “A Broadband, Planar, Monolithic Resistive Frequency Doubler,” IEEE MTT-S Int. Symp. Dig., pp. 175-178, 1994.
[13]ZVI NATIVE, “The Application of a Frequency Multiplier Design Method to the Design of Microwave Parametric Dividers,” IEEE Trans. Microw. Theory Tech., vol. MTT 35, no. 2, pp. 189-194, Feb. 1987.
[14]Chuying Mao, et al., “125-GHz Diode Frequency Doubler in 0.13-μm CMOS,” IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1531–1538, May 2009.
[15]J.-C. Chiu, J.-C. Chiu, C.-P. Chang, M.-P. Houng, and Y.-H. Wang, “A 12–36 GHz PHEMT MMIC Balanced Frequency Tripler,” IEEE Microw. Wireless Compon. Lett, vol. 16, no. 1, pp. 19-21, Jan. 2006.
[16]Cuong Huynh and Cam Nguyen,, “New Ultra-High-Isolation RF Switch Architecture
and Its Use for a 10-38 GHz 0.18-μm BiCMOS Ultra-Wideband Switch,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 345-353, February 2011.
[17]Bo-Jiun Huang, Bo-Jr Huang, Kun-You Lin, and Huei Wang, “A 2-40 GHz active balun using 0.13-μm CMOS process,” IEEE Microw Wireless Compon. Lett., vol. 19, no. 3, pp. 164-166, Mar. 2009.
[18]H. Fudem and E. C. Niehenke, “Novel Millimeter Wave Active MMIC Triplers,” in
IEEE MTT-S Int. Dig., vol. 2, 1998, pp. 387-390.
[19]C. Baer, et al., “A Passive 8 to 24 GHz Frequency TripIer based on Microstrip Line Circuits and Schottky Diodes,” Proceedings of Asia-Pacific Microwave Conference 2010, pp. 706-709.
[20]Mina Danesh, et al, “Differential VCO and Frequency Tripler using SiGe HBTs for the 24 GHz ISM Band,” IEEE Radio Frequency Integrated Circuit (RFIC) Symposium 8-10 Jun. 2003
[21]Fan-Hsiu Huang, et al., “A 20-to-60 GHz CMOS Frequency Tripler based on a BPSK Modulator,” Proceedings of Asia-Pacific Microwave Conference, 2009.
[22]You Zhung, et al, “A Broadband CMOS Frequency Tripler Using a Third-Harmonic Enhanced Technique,” IEEE J. Solid-State Circuits, vol. 42, no. 10, Oct. 2007
[23]B.-J. Huang, Z.-M. Tsai, B.-J. Huang, K.-Y. Lin, H. Wang and C.-C. Chiong, “A GaAs-based HBT 31-GHz frequency doubler with an on-chip voltage,” 2008 Asia Pacific Microw. Conf. Dig., Dec. 2008, pp.1-4.
[24]Y. Liu, T. Yang, Z. Yang and J. Chen, “A 3-50 GHz Ultra-Wideband PHEMT MMIC Balanced Frequency Doubler,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 629-631, Sep. 2008.
[25]K.-Y. Lin, J.-Y. Huang, J.-L. Kuo, C.-S. Lin, and H. Wang, “A 14-23 GHz CMOS MMIC distributed doubler with a 22-dB fundamental rejection,” in IEEE MTTS Int. Micro. Symp. Dig., Jun. 2008, pp. 1477-1480.
[26]K.-Y. Lin, J.-Y. Huang and S.-C. Shin “A K-band CMOS distributed doubler with current-reuse technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 308-311, May 2009.
[27]T. Choet al., “A single-chip CMOS direct-conversion transceiver for 900 MHz spread-spectrum digital cordless phones,” in Int. Solid-State Circuits Conf. Tech. Dig., Feb. 1999, pp. 228-229.
[28]W. Zhuo et al., “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 875-879, Dec. 2005.
[29]X. Liet al.,“Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609-2619, Dec. 2005.
[30]X. Fan et al., “A noise reduction and linearity improvement technique for a differential cascode LNA,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588-599, Mar. 2008.
[31]I. R. Chamas and S. Raman, “Analysis, Design, and X-band Implementation of a Self-Biased Active Feedback Gm-Boosted Common-Gate CMOS LNA,” IEEE Trans. Microw. Theory Tech. , vol. 57, no. 3, pp. 542-551, Mar. 2009.
[32]Z. Jian, B. Mingquan, D. Kuylenstierna, L. Szhau, and H. Zirath, “Broadband Gm-boosted differential HBT doublers with transformer balun,” IEEE Trans. Microw. Theory Tech. , vol. 59, no. 11, pp. 2953-2960, Nov. 2011.
[33]Shao Wei Lin et al, “A Compact Size Ka Band pHEMT MMIC Frequency Tripler with CPW Technology,” Proceedings of Asia-Pacific Microwave Conference, 2007.
[34] Jung-Hau Chen and Huei Wang, “A High Gain, High Power K-Band Frequency Doubler in 0.18 μm CMOS Process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 522-524, Sept. 2010.
[35]S. H. Weng, G. Y Chen, et al., “A K-Band High Efficiency High Output Power CG-CS Frequency Doubler in 0.5-μm GaAs E/D-Mode PHEMT Process,” Proceedings of Asia-Pacific Microwave Conference, 2011.
[36]Stephen A. Mass,“Nonlinear Microwave and RF Circuits,” Artech House Publishers 2nd.Edition, Jan. 2003.
[37]David M. Pozar著,微波工程,郭仁財譯,高立書局,臺北縣,民國九十五年。
[38]B. Razavi, “RF Microelectronics”, Prentice Hall PTR, NJ, 1998.
[39]Kazuya Yamamoto, “A 1.8-V Operation 5-GHz-Band CMOS Frequency Doubler Using Current-Reuse Circuit Design Technique,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1288–1295, Mar. 2005.
|