參考文獻 |
[1] C. Karnfelt, R. Kozhuharov, H. Zirath, and I. Angelov, “High-purity 60 GHz-band single-chip X8 multipliers in pHEMT and mHEMT technology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2887–2897, Jun. 2006.
[2] K. Yuk and G. R. Branner, “Advances in active microwave frequency multipliers,” in IEEE Int. Midwest Symp. on Circuits and Systems, Aug. 2011, pp. 1–4.
[3] S. Ko, J. Kim, T. Song, E. Yoon, and S. Hong, “K- and Q-bands CMOS frequency sources with X-band quadrature VCO,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2798–2800, Sep. 2005.
[4] C.-Y. Yang, C.-H. Chang, J.-M. Lin, and H.-Y. Chang, “A 20/40-GHz dual-band voltage-controlled frequency source in 0.13-m CMOS,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 2008–2016, Aug. 2011.
[5] K.-Y. Lin, J.-Y. Huang, J.-L. Kuo, C.-S. Lin, and H. Wang, “A 14–23 GHz CMOS MMIC distributed doubler with a 22-dB fundamental rejection,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 1477–1480.
[6] F. Ellinger and H. Jackel, “Ultracompact SOI CMOS frequency doublerfor low power applications at 26.5–28.5 GHz,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 2, pp. 53–55, Feb. 2004.
[7] H. Zirath, T. Masuda, R. Kozhuharov, and M. Ferndahl, “Development of 60 GHz front-end circuits for a high-data-rate communication system,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp. 1640–1649, Oct. 2004.
[8] Y. Liu, T. Yang, Z. Yang and J. Chen, “A 3–50 GHz ultra-wideband pHEMT MMIC balanced frequency doubler ,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 629–631, Sept. 2008.
[9] S. Mahon, P. Beasly, J. Harvey and A. Bessemoulin, “A broadband millimetre-wave differential pHEMT frequency doubler MMIC,” in Proc. IEEE CSIC’05, Nov. 2005, pp. 212–215.
[10] K.-L. Deng, and H. Wang, “A miniature broad-band pHEMT MMIC balanced distributed doubler,” IEEE Trans. Microw. Theory Tech., vol. 51, pp. 1257-1261, Apr. 2003.
[11] H.-P. Forstner; F. Starzer, G. Haider, C. Wagner, M. Jahn, “Frequency quadruplers for a 77GHz subharmonically pumped automotive radar transceiver in SiGe,” in 2009 Eur. Microw. Integrated Circuits Conf., (EuMIC), Sept. 28–29, 2009, pp. 188–191.
[12] Juo-Jung Hung, Timothy M. Hancock, and Gabriel M. Rebeiz, “A high-efficiency miniaturized SiGe Ku-band balanced frequency doubler,” in IEEE RFIC Symp. Dig., Jun. 2004, pp. 219-222.
[13] C.-C. Weng, Z.-M. Tsai, and H. Wang, “A K-band miniature, broadband, high output power HBT MMIC balanced doubler with integrated balun,” in IEEE Eur. Microw. Conf. Dig., Oct. 4–6, 2005, vol. 3, pp. 1–3.
[14] D.-W. Kang, D.-H. Baek, S.-H. Jeon, J.-W. Park, and S. Hong, “A miniaturized K-band balanced frequency doubler using InGaP HBT technology,” IEEE MTT-S Symp. Dig., Jun. 2003, vol. 1, 8-13, pp. 107-110.
[15] S. Hackl and J. Böck, “42 GHz active frequency doubler in SiGe bipolar technology,” in Proc. Int. Conf. Microw. Technol., Aug. 2002, pp. 54–47.
[16] K.-Y. Lin, J.-Y. Huang, C.-K. Hsieh and S.-C. Shin, “A broadband balanced distributed frequency doubler with a sharing collector line,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 110–112, Feb. 2009.
[17] B.-J. Huang, Z.-M. Tsai, B.-J. Huang, K.-Y. Lin, H. Wang and C.-C. Chiong, “A GaAs-based HBT 31-GHz frequency doubler with an on-chip voltage,” in 2008 Asia Pacific Microw. Conf. Dig., Dec. 2008, pp.1-4.
[18] J. Li, Y.-Z. Xiong, W.-L. Goh, and W. Wu, “A 27–41 GHz frequency doubler with conversion gain of 12 dB and PAE of 16.9%,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 8, pp. 427- 429, Aug. 2012.
[19] J. Zhang, M. Bao, D. Kuylenstierna, S. Lai, and H. Zirath, “Broadband Gm-boosted differential HBT doublers with transformer balun,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 11, pp. 2953-2960, Nov. 2011.
[20] T. Hiraoka, T. Tokumitsu, and M. Akaike, “A miniaturized broadband MMIC frequency doubler,” IEEE Trans. Microw. Theory Tech., vol. 38, pp. 1932-1936, Dec. 1990.
[21] H.-Y. Chang, G.-Y. Chen, and Y.-M. Hsin, “A broadband high efficiency high output power frequency doubler,” IEEE Microw. Wireless Compo Lett., vol. 20, no. 4, pp. 226-228, Apr. 2010.
[22] S.-H. Weng, G.-Y. Chen, H.-Y. Chang, and Y.-M. Hsin, “A K-band high efficiency high output power CG-CS frequency doubler in 0.5-µm GaAs E/D-mode PHEMT process,” in 2011 Asia Pacific Microw. Conf. Dig., Dec. 2011, pp.1258-1261.
[23] G.-Y. Chen, Y.-L. Yeh, H.-Y. Chang, and Y.-M. Hsin, “A Ka-band broadband active frequency doubler using CB-CE balanced configuration in 0.18 µm SiGe BiCMOS process,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp.1-3.
[24] K. Shirakawa, Y. Kawasaki, Y. Ohashi, and N. Okubo, “A 15/60 GHz one-stage MMIC frequency quadrupler,” in IEEE Microw. Millimeter-Wave Monolithic Circuits Symp. Dig., Jun. 1996, pp. 35–38.
[25] C. Wang, and V. Fusco, “High-purity 56–66GHz quadrupler for V-band radio homodyne and heterodyne transceiver applications,” in Int. SOC Conf., Sept. 9–11, 2009, pp. 203–205.
[26] Y. Campos-Roca, L. Verweyen, M. Femdindez-Barciela, M. C. Curris-Francos, E. Sdnchez, A. HUlsmann, and M. Schlechtweg, “Millimeter-wave active MMIC frequency multipliers,” in Eur. Microw. Conf., Sept. 24–26, 2001, pp. 1–4.
[27] N.-C. Kuo, Z.-M. Tsai, K. Schmalz, J. C. Scheytt, and H. Wang, “A 52–75 GHz frequency quadrupler in 0.25-µm SiGe BiCMOS process,” in Eur. Microw. Integrated Circuits Conf., 2010 (EuMIC), Sept. 27–28, 2010, pp. 365–368.
[28] P. Sandhiya , J. G.E Mayock, and C. Buck, “A Ka band, low power dissipation, high spectral purity GaAs pHEMT MMIC X4 multiplier,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006, pp. 1513–1516.
[29] Y. Yamaguchi, T. Kaho, and K. Uehara., “A highly integrated X-band frequency quadrupler MMIC using 3D-MMIC technology,” in 2007 IEEE RFIC Symp. Dig., Jun. 2007, pp.757-760.
[30] A. Boudiaf, D. Bachelet, and C. Rumelhard, “38 GHz MMIC PHEMT-based tripler with low phase-noise properties,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2000, pp. 509-512.
[31] H. Fudem and E.C. Niehenke, “Novel millimeter wave active MMIC triplers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 1998, pp. 387-390.
[32] J.-C. Chiu, C.-P. Chang, M-P Houng, and Y.-H. Wang, “A 12-36 GHz PHEMT MMIC balanced frequency tripler,” IEEE Microw. Wireless Compo Lett., vol. 16, no. 1, pp. 19-21, Jan. 2006.
[33] S.-W. Lin, H.-C. Chiu, and J.S. Fu, “High-efficiency Ka band microwave monolithic integrated circuit frequency tripler using lumped-element balun,” IET Microw. Antennas Propag., vol. 5, no.1, pp. 30-37, Jan. 2011.
[34] V. Puyal , A. Konczykowska , P. Nouet , S. Bernard , S. Blayac , F. Jorge , M. Riet, and J. Godin “DC-100 GHz frequency doublers in InP DHBT technology,” IEEE Trans. Microw. Theory Tech., vol. 53, pp. 1388, Apr. 2005.
[35] G.-Y. Chen, H.-Y. Chang, S.-H. Weng, C.-C. Shen, Y.-L. Yeh, J.-S. Fu, Y.-M. Hsin, and Y.-C. Wang, “Design and analysis of a Ka-band monolithic high-efficiency frequency quadrupler using GaAs HBT–HEMT common-base/common-source balanced topology,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 10, pp. 3674–3689, Oct. 2013.
[36] K.-Y. Lin, J.-Y. Huang, and S.-C. Shin, “A K-band CMOS distributed doubler with current-reuse technique,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 308–310, May 2009.
[37] P.-H. Tsai, Y.-H. Lin, J.-L. Kuo, Z.-M. Tsai, and H. Wang, “Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated marchand balun,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp. 1913-1923, May 2013.
[38] J.-H. Chen and H. Wang, “A high gain, high power K-band frequency doubler in 0.18 m CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 522–524, Sep. 2010.
[39] J. T. Sun, Q. Liu, Y. J. Suh, T. Shibata, and T. Yoshimasu, “A 22-30 GHz balanced SiGe BiCMOS frequency doubler with 47dBc suppression and low input drive power,” in Asia-Pacific Microw. Conf. Dig., Dec. 2009, pp. 2260-2263.
[40] A. Y.-K. Chen, Y. Baeyens, Y.-K. Chen, and J. Lin, “A 36–80 GHz high gain millimeter-wave double-balanced active frequency doubler in SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 572–574, Sep. 2009.
[41] J.-J. Hung, T. M. Hancock, and G. M. Rebeiz, “High-power high-efficiency SiGe Ku- and Ka-band balanced frequency doublers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 754–761, Feb. 2005.
[42] D. Y. Jung, and C. S. Park, “A low-power, high-suppression V-band frequency doubler in 0.13 m CMOS,” IEEE Microw. Wireless Common. Lett., vol. 18, no. 8, pp. 551-553, Aug. 2008.
[43] J. Chen, P. Yan, W. Hong, “A 50-70 GHz frequency doubler in 90 nm CMOS,” in Microwave Workshop Series on Millimeter Wave Wireless Technology and Applications (IMWS), 2012 IEEE MTT-S International, Sept. 2012, pp. 1-3, 18-20,.
[44] M. Ferndahl, B. M. Motlagh, and H. Zirath, “40 and 60 GHz frequency doublers in 90-nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2004, pp. 179-182.
[45] M. Kantanen, J. Holmberg, T. Karttaavi, and J. Volotinen, “60 GHz frequency conversion 90 nm CMOS circuits,” in Proc. 3rd Eur. Microw. Integr. Circuits Conf., Oct. 2008, pp. 60-63.
[46] T. Cho, E. Dukatz, M. Mack, D. MacNally, M. Marringa, S. Mehta, C. Nilson, L. Plouvier, and S. Rabii, “A single-chip CMOS direct-conversion transceiver for 900 MHz spread-spectrum digital cordless phones,” in Int. Solid-State Circuits Conf. Tech. Dig., Feb. 1999, pp. 228–229.
[47] W. Zhou, X. Li, S. Shekhar, S. H. K. Embabi, J. P. de Gyvez, D. J. Allstot, and E. Sanchez-Sinencio, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 875–879, Dec. 2005.
[48] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-m CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
[49] X. Fan, H. Zhang, and E. Sánchez-Sinencio, “A noise reduction and linearity improvement technique for a differential cascode LNA,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588–599, Mar. 2008.
[50] I. R. Chamas and S. Raman, “Analysis, design, and X-band implementation of a self-biased active feedback Gm-boosted common-gate CMOS LNA,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 542–551, Mar. 2009.
[51] F. Belmas, F. Hameau, and J. Fournier, “A low power inductorless LNA with double Gm enhancement in 130 nm CMOS,” IEEE J. Solid-State Circuits, vol.47, no.5, pp. 1094-1103, May 2012.
[52] J. Zhang, M. Bao, D. Kuylenstierna, S. Lai, and H. Zirath, “Transformer-based broadband high-linearity HBT Gm-boosted transconductance mixers,” IEEE Trans. Microw. Theory Tech., vol. 62, no. 1, pp. 92–99, Jan. 2014.
[53] H. Wang, R. Lai, L. Tran, J. Cowles, Y. C. Chen, E. W. Lin, H. H. Liao, M. K. Ke, T. Block, and H. C. Yen, “A single-chip 94 GHz frequency source using InP-based HEMT–HBT integration technology,” in IEEE RFIC Symp. Dig., Jun. 1998, pp. 275–278.
[54] K. W. Kobayashi, A. K. Oki, D. K. Umemoto, T. R. Block, and D. C. Streit, “A novel self-oscillating HEMT–HBT cascode VCO-mixer using an active tunable inductor,” IEEE J. Solid-State Circuits, vol. 33, no. 6, pp. 870–876, Jun. 1998.
[55] H.-Y. Chang, Y.-C. Liu, S.-H. Weng, C.-H. Lin, Y.-L. Yeh, and Y.-C. Wang, “Design and analysis of a DC–43.5-GHz fully integrated distributed amplifier using GaAs HEMT–HBT cascode gain stage,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 443-455, Feb. 2011.
[56] C.-C. Shen, H.-Y. Chang, and Y.-C. Wang, “A Monolithic 3.5-to-6.5 GHz GaAs HBT-HEMT/common-emitter and common-gate stacked power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 9, pp. 474–476, Sept. 2012.
[57] S.-H. Weng, H.-Y. Chang, C.-C. Chiong, and Y.-C. Wang, “Gain-bandwidth analysis of broadband darlington amplifiers in HBT-HEMT process,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 11, pp. 3458-34735, Nov. 2012.
[58] “Sonnet® User’s Guide,” 12th ed. Sonnet Software Inc., North Syracuse, NY, 2009.
[59] E. Camargo, Design of FET Frequency Multipliers and Harmonic Oscillators, Artech House, 1998.
[60] S. A. Maas, Nonlinear Microwave and RF Circuits, Artech House, 2003.
[61] S. Bousnina, P. Mandeville, A. B. Kouki, R. Surridge, and F. M. Ghannouchi, “Direct parameter-extraction method for HBT small-signal mode,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 2, pp. 529–536, Feb. 2002.
[62] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 7, pp. 1151–1159, Jul. 1988.
[63] Y.-L. Yeh, and H.-Y. Chang, “A W-band wide locking range and low DC power injection-locked frequency tripler using transformer coupled technique,” IEEE Trans. Microw. Theory Tech., vol.61, no.2, pp.860-870, Feb. 2013. |