摘要(英) |
Complicated geological conditions, high frequency of faults and shear
zones, and abundant groundwater are the main difficulties in tunneling in
Taiwan. The treatment of cave in hazard due to the large quantity of
groundwater ingression with high pressure is extremely difficult. Cases
study in grouting treatment of geological weak zones with groundwater
ingression in Pinglin Pilot Tunnel at Sta. 39K+074 are reported and evaluated
in this thesis for providing a direction of planning for treatment of water
influx in tunneling.
Corresponding experiences for treatment, data which include
permeability and effective range for grouting in this research are obtained
from two cases, one is the treatment of weak geological area which contains
abundant groundwater with debris flow in the Szeleng Sandstone formation of
Pinglin Pilot Tunnel, another is the recovery method from No.3 Fresh Air
Shaft at the Pinglin Tunnel, the model of grouting treatment for permeable
ability of fissured rock is established for application in similar situations
encountered later on.
Permeability of fissured rock mass is decreasing when embedment depth
is increasing, the permeability is quite dispersing and it is difficult to obtained
an exact value from several test only.
Porosity is the major factor for the planning of injection quantity when
grouting in soil mass, but for the rock mass, which is mainly based on fracture
aperture.
According to the grouting experience in the Pinglin Pilot Tunnel, 3 types
of grouting pattern are suggested based on following procedure, first the
III
treatment flow chart is established, the most suitable time and proper grouting
method are concluded in accordance to in-situ situation, these are provided a
direction of planning for grouting treatment on simulated cases.
When special geological condition is encountered during the tunnel
excavation, the planning of ground improvement method is based on the
consideration of several factors, such as, rock mass characteristics,
hydrological geology, engineering and environment, construction equipments
and materials. The ground improvement is carrying out due to the planning
method and it is alternated according to the in-situ situation. |
參考文獻 |
1.土木工學會,「建設工程與地下水」,土質工學會,東京,第153?158頁 (1980)。
2.中興工程顧問社,「坪林隧道導坑地下水問題評估初步結果摘要」,台北 (1993)。
3.中興工程顧問公司,「坪林隧道導坑工程里程39K+079 TBM遭遇異常湧水受困處理分析及責任鑑定報告」,台北 (1997)。
4.「今日的隧道工程」,中國土木水利工程學會大地工程委員會,地工技術第十次研討會資料,台北 (1992)。
5.古元豐、李宏徹,「北宜高坪林隧道導坑里程39K+079 TBM停機處理之判釋」,1996 岩盤工程研討會論文集,台北,第221?230頁 (1996)。
6.何春蓀,台灣地質概論-台灣地質圖幅說明書,經濟部中央地質調查所,台北,第11?19頁 (1986)。
7.李振誥、李宏徹、黃崇琅、林碧山,「岩體隧道滲流量之預測-以坪林隧道為例」,中國土木水利工程學刊,第十卷,第四期,第595?604頁 (1998)。
8.耿慶志,「隧道施工湧水評估之半解析方法」,地工技術雜誌,台北,第52期,第95?102頁 (1995)。
9.張有天,「岩體滲流理論與工程設計之基本理論部分」,中興工程顧問公司舉行中國大陸隧道工程專題演講報告,台北 (1998)。
10.程鑒基,「也談水泥類化學灌漿加固隧道基底軟土的技術問題」,中國土木工程學會隧道及地下工程學會第八屆年會論文集,洛陽,第538?543頁 (1994)。
11.曾大仁,「坪林隧道困難地質處理施工案例探討」,國道新建工程局,國道工程之回顧與展望十週年局慶學術研討會論文集,台北,第561?578頁 (2000)。
12.曾大仁、蔡秉儒、張龍均「山岳隧道湧水地盤處理案例探討」,第二屆海峽兩岸隧道與地下工程學術研討會論文集,台北,第385?394頁 (2001)。
13.陳進杰、馮衛星、趙天成,「飽和粘性土地表劈裂灌漿研究」,中國土木工程學會隧道及地下工程學會第八屆年會論文集,洛陽,第511?517頁 (1994)。
14.國道新建工程局,「國道北宜高速公路工程基本設計階段坪林-頭城段地質調查工作期末報告」,台北,第十一章 (1991)。
15.國道新建工程局,「國道北宜高速公路計畫坪林隧道湧水問題評估調查服務工作第二年度成果報告」,台北,第四章 (1999)。
16.武藤章、鈴木和夫,「國道158號安房隧道調查坑經低速帶大湧水處理案例」,地下鐵道期刊,東京,第20卷6號 (1998)。
17.鹿島建設株式會社,「隧道施工之補助工法」止水注入工法,台北(1993)。
18.蝦名克彥,尾原雄三,「施工中鐵道之地下水對策」,土與基礎,地盤工學會,東京,第43卷9號,第17?21頁,東京 (1995)。
19.Baker, C., “Rock Stabilization in Rock Mechanics,” edited
by Springer L.M., Lecture during course held at the Dept.
of Mechanics of Solids, Udine (1974).
20.Baker W.H., “Grouting in Geotechnical Engineering,” American
Society of Civil Engineers, New York, pp. 631??650 (1982).
21.Goodman, R.E., “ Introduction to Rock Mechanics,”
Second edition, John wiley and Sons, New York,pp.34?? 36
(1989).
22.Shroff, A.V. and Shah, D.L., “Grouting Technology in Tunneling and
Dam Construction,” A.A. Balkema Publishers, New York, pp.145??
147 (1993).
23.Sinha, R.S., “Underground Structures Design and Instrumentation,”
Elsevier Science Publisher B.V., New York, pp. 131??140 and pp. 328
??350 (1989).
24.Snow, D.T., “A parallel plate model of fractured
permeable media,” Ph. D. Dissertation, University of
Califormia, Berkeley (1965).
25.Todd, D.K., “Groundwater Hydrology,” Second edition,
John Wiley and Sons, New York, pp. 64?? 66 (1976).
26.Whittaker, B.N. and Frith, R.C., “Tunnelling Design Stability and
Construction,” the Institution of Mining and Metallurgy, London,
pp. 199??228 (1990).
114
27.Wilson, C.R., and Witherspoon, P.A., “An Investigation of
Laminar Flow in Fractured Porous Rocks,” University of
California, Department of Civil Engineering, Berkeley,
California, pp. 178 (1970).
28.Yuri, N.S., and Eugeniy, B.N., “Hydrogeological
Investigations and Water Ingress Treatment for
Tunnelling,” Sinotech Engineering Consultants, Inc.,
Lecture Notes, pp. 4-1?? 6-3 (1999). |