博碩士論文 101356011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.226.251.72
姓名 任嘉琦(Chia-chi Jen)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 過濾硫酸銅電鍍液之聚丙烯濾心再利用可行性研究
(The Feasibility of Recycling Copper Plating Polypropylene Filter)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 塑膠類廢棄物不易自然分解,且焚化處理易產生戴奧辛等有害氣體,造成空氣污染問題,是各國政府很難解決的問題,在七大類塑膠材質中,又以第五類聚丙烯使用量最大,佔總塑膠使用量60%以上,如有適當方法或技術能善用這些資源,不僅可以大幅降低塑膠類廢棄物的量,同時,也能創造許多附加價值。
本研究之目的,是針對過濾硫酸銅電鍍液之聚丙烯濾心,以不同萃取方式及溶劑或添加劑,將被截留於濾心纖維中之雜質及殘留電鍍液溶出,探討出最佳萃取條件,並檢測回收之聚丙烯纖維之物理及機械性質,測試其材質是否劣化或變質,以達到將聚丙烯纖維資源化及再利用之目的。
實驗結果顯示,濾心纖維粉碎的尺寸越小,萃取雜質效果越好;不同萃取方式之比較,則以超音波震盪可以最有效增加雜質的溶解速度;萃取溶劑之選擇,若單純以去離子水萃取雜質效果不佳,萃取率僅69.9%,以酸萃取時若萃取時間超過12小時,萃取率可達 83.5%,以螯合劑做為萃取液添加劑,並依螯合劑種類及解離型態控制反應之 pH值,可在短時間內去除 92% 以上重金屬雜質,但因螯合劑與重金屬雜質螯合後所形成之錯合物性質穩定,亦造成後續廢水處理難度增加,實廠操作時選擇何種萃取方式,需仔細評估。經過物理及機械性能檢測,回收之聚丙烯材質無明顯劣化或變質情形,可達再利用之標準。
摘要(英) Plastic waste is not easily biodegradable and incineration of hazardous gases like dioxin will produce thar causing air pollution problems. These are serious problemes and difficult to be solved by governments. In the seven major types of plastic materials, the polypropylene fifth of plastic materials, is the largest materials of usage amount, in other words, the total amount of more than 60% . If there is an appropriate method or technology that can make the best use of these resources, we not only can significantly reduce the amount of plastic waste, but also can create a lot of added value.
This study is aimed at filtering copper plating solution of polypropylene, in different ways and the extracted solvents or additives, will be trapped in the dissolution of impurities and residual plating solution between the filter to explore the optimal extraction conditions, and detecting the physical and mechanical properties of polypropylene fiber recycling, and testing whether the degradation or deterioration of the material in order to achieve the purpose of the polypropylene fibers and reuse of resources.
Experimental results show via Fiber Filter crushing if the smaller is the size, the better is the extraction of impurities. Also when comparing different extraction methods, the most effective sonication can increase the rate of dissolution of impurities. In selecting the extraction solvent, the mere extraction with deionized water impurities gare poor results, the extraction rate was only 69.9%, However in terms of the acid extraction, if the extraction time is more than 12 hours, the extraction rate is 83.5%. Increasing the chelating agent as an additive, and controling its dissociation patterns by adjust the pH value, more than 92% of heavy metal impurities can be removed within a short time. However, the chelating agents and chelate heavy metal impurities will form stable complexes which causes subsequent wastewater treatment more difficult. Thus, the actual operation during the process of extraction, careful and further evaluation is required. After detection of the physical and mechanical properties of recover polypropylene filter, its material properties does not become apparent inferiority, nor deterioration of the situation, and it can meet the requirement for reuse.
關鍵字(中) ★ 聚丙烯
★ 濾心
★ 回收再利用
★ 萃取
★ 螯合劑
關鍵字(英) ★ Polypropylene
★ filter
★ recycling
★ extraction
★ chelating agents
論文目次 目錄……………………………………………………………………........................I
圖目錄……………………………………………………………………............. IV
表目錄……………………………………………………………………............. VII

第一章 前言……………………………………………………………................ 1

1-1 研究緣起………………………………………………….………... 1
1-2 研究目的與內容…………………………….……………………... 2

第二章 文獻回顧………………………………………….……………………... 3

2-1 聚丙烯濾心簡介…………………….……….…………………….. 3
2-1-1 聚丙烯簡介………………….……….…………………….. 3
聚丙烯濾心………………….……………………….…..… 7
聚丙烯之回收再利用………………….…….…………..… 8
2-2 國內金屬電鍍業概況…………….................................................... 9
2-2-1 電鍍原理…………………………………........................... 9
2-2-2 電鍍目的………………………………………………....... 11
2-2-3 國內電鍍業產業現況……………………………………… 11
2-3 電鍍業鍍液成分及純化方式……………………………………… 14
2-3-1 電鍍業鍍液成分……………………………………........... 14
2-3-2 鍍液管理及純化……………………………………........... 15
2-4 濾心過濾機制…………………………………………………….... 16
2-4-1 纖維濾材過濾原理………………………………………… 16
2-4-2 濾心過濾機制……………………………………………… 18
2-5 螯合劑之特性與應用………………………………….................... 20
2-5-1 EDTA簡介…………………………………........................ 21
2-5-2 EDTA之應用………………................................................. 22
2-5-3 NTA簡介…………………................................................... 23
2-5-4 螯合劑於環境工程之應用……………………………….... 25

第三章 研究方法………………………………………….……….…………….. 28

3-1 研究內容…………………………………………………….…..…. 28
3-2 實驗材料與藥品………………………….……………….…..…… 30
3-2-1 濾心樣品…………………………………………………… 30
3-2-2 實驗藥品………………………………………………..….. 33
3-3 實驗設備與儀器………………………………….…………..……. 33
3-3-1 實驗設備…………………………………………………… 33
3-3-2 分析儀器…………………………………………………… 35
實驗方法…………………………………………………………… 37
3-4-1 廢濾心纖維表面金屬雜質成分及含量分析……………... 37
3-4-2 不同溶劑及溶劑濃度對雜質去除率之影響…………....... 37
3-4-3 不同萃取方式對雜質去除率之影響……………….……... 38
3-4-4 不同萃取液添加劑(螯合劑)對雜質去除率之影響………. 38
3-4-5 不同粉碎方式(纖維長度)對雜質去除率之影響…………. 38

第四章 結果與討論…………………………………………………………........ 39

4-1 廢濾心纖維表面雜質成分及含量分析…….................................... 39
4-2 廢濾心纖維表面雜質去除率之影響因子……………………….... 41
4-2-1 不同溶劑及溶劑濃度對雜質去除率之影響…………….... 41
4-2-2 不同萃取方式對雜質去除率之影響……………………… 45
4-2-3 不同萃取液添加劑(螯合劑)對雜質去除率之影響............ 52
4-2-4 不同粉碎方式(纖維長度)對雜質去除率之影響…............ 57
4-3 回收之聚丙烯物理、機械性質檢測….............................................. 60
4-4 成本效益分析…................................................................................ 72

第五章 結論與建議.…………………………………………………………....... 77

5-1 結論……………………………………………………………….... 77
5-2 建議……………………………………………….………………... 78

參考文獻………………………………………………………………….............. 79


圖 目 錄
目次 頁次
圖2-1 聚丙烯結構式………………………………………. …………………... 4
圖2-2 a 同側結構 b 異側結構 c 錯位結構……………………………….. 6
圖2-3 表面過濾………………………………………………………….……… 17
圖2-4 深層過濾…………………………………………………………………. 17
圖2-5 篩除機制……………………………….. ……………………………….. 18
圖2-6 慣性碰撞 ……………………………………………………….……….. 18
圖2-7 截留機制…………………………………………………………………. 19
圖2-8 布朗擴散 …………………………………………………………….….. 19
圖2-9 靜電吸附 ………………………………………………………….…….. 20
圖2-10 EDTA結構式 …………………………………………………….…….. 21
圖2-11 EDTA 在不同pH 值下解離型式 ………………………………….….. 22
圖2-12 NTA結構式 …………………………………………………………….. 24
圖2-13 金屬(Metal)與EDTA錯合物之立體結構…………………...…………. 25
圖2-14 NTA之物質安全資料表………………………………………………… 27
圖3-1 研究流程圖………………………………………………………............. 29
圖3-2 A廠同電鍍槽使用之銅光澤劑成分MSDS…………………………..... 32
圖4-1 銅以外其他金屬百分比……………………………………….………… 40
圖4-2 不同溶劑及溶劑濃度萃取濾心樣品雜質實驗………………….……… 42
圖4-3 不同溶劑在不同時間對金屬雜質之萃取量……………………….…… 43
圖4-4 pH值與銅優勢物種關係圖……………………………………………… 43
圖4-5 不同濃度 HNO3 於不同時間對金屬雜質之萃取量…………….…….. 44
圖4-6 不同濃度 H2SO4 於不同時間對金屬雜質之萃取量2………………… 45
圖4-7 不同溶劑及溶劑濃度對金屬雜質之萃取率…………………….……… 45
圖4-8 不同淋洗流率萃取含金屬雜質濾心圖…………………….…………… 46
圖4-9 水浴震盪萃取含金屬雜質濾心圖………………………….…………… 47
圖4-10 超音波震盪萃取含金屬雜質濾心圖……………………….…………… 47
圖4-11 不同淋洗流率對金屬雜質之萃取量……………………………………. 48
圖4-12 不同濃度酸淋洗對金屬雜質之萃取率…………………………………. 49
圖4-13 去離子水以不同萃取方式對金屬雜質之萃取量……………………… 50
圖4-14 1N HNO3 以不同萃取方式對金屬雜質之萃取量…………….……….. 50
圖4-15 3N HNO3 以不同萃取方式對金屬雜質之萃取量…………….……….. 51
圖4-16 1N H2SO4 以不同萃取方式對金屬雜質之萃取量…………………….. 51
圖4-17 3N H2SO4 以不同萃取方式對金屬雜質之萃取量…………….………. 52
圖4-18 螯合劑萃取濾心樣品金屬雜質實驗………………….………………… 53
圖4-19 EDTA於不同pH值之金屬雜質萃取量…………….…………………. 55
圖4-20 NTA於不同pH值之金屬雜質萃取量…………………..……………….. 55
圖4-21 EDTA及NTA於各pH值之金屬雜質萃取率…………………..………… 56
圖4-22 EDTA與不同金屬離子在不同pH值下螯合情形……………………….. 56
圖4-23 粉碎後之濾心樣品……………………………………………….……… 57
圖4-24 不同裁切長度之濾心樣品…………………………….………………… 58
圖4-25 不同粉碎長度之金屬雜質萃取量………………………….…………… 59
圖4-26 不同粉碎長度之金屬金屬雜質萃取率…………………….…………… 59
圖4-27 油壓曲軸式射出成形機……………………………….………………… 61
圖4-28 ASTM試片模具……………………………………………….…………. 61
圖4-29 比重測試-比重計……………………………………………..………….. 62
圖4-30 灰份試驗-高溫爐…………………………………………..…………….. 62
圖4-31 熔融流率測試-熔融指數測試儀…………………………..…………….. 63
圖4-32 彎曲試驗-萬能試驗機……………………………………..…………….. 63
圖4-33 Izod缺口衝擊強度試驗- Izod衝擊試驗機……………………...……….. 64
圖4-34 熱變形溫度測試-熱變形試驗機………………………………..……….. 64
圖4-35 模具收縮率測試-高度規………………………………………..……….. 65
圖4-36 水份試驗-水份測試儀…………………………………………..……….. 65
圖4-37 聚丙烯密度與剛性對應關係………………………………….………… 71
參考文獻 [1] 行政院環境保護署,「國家環境保護計畫」,2010。
[2] 謝昆諺,「全球環保性紡織品發展現況報導」,紡織速報,第109期,中國紡織工業研究中心,第13~27頁,2001。
[3] 美國塑膠工業協會(Society of the Plastics Industry),塑膠辨識碼(Resin identification code),1988。
[4] J.A. BBrydson; 范啟明譯,「塑膠材料」,大中國,1989。
[5] 游振宗,「纖維高分子材料」,超級科技,1989。
[6] 賴耿陽編譯,「塑膠材料技術讀本」,台灣復文,1996。
[7] 台灣區織布工業同業公會,「聚丙烯PP環保纖維介紹」。
[8] 中國聚合物網,「聚丙烯回收利用技術」,2006。
[9] 蘇心敏,「常溫電漿改質聚丙烯纖維接枝硫脲去除銅離子之可行性」,碩士論文,環境工程研究所,成功大學,2006。
[10] 王大倫譯,「實用電鍍學」,徐氏文教,1993。
[11] 台灣區表面處理工業同業公會,「產業概況」,2014。
[12] 陳懷超,「電鍍基本知識」,三億,2001。
[13] 蘇癸陽、張良謙,「實用電鍍理論與實際」,復文,1999。
[14] 劉俊傑,「金屬的表面處理與加工」,徐氏文教,1993。
[15] 經濟部工業局 產業綠色技術資訊網,「行業製程減廢及污染防制技術-電鍍行業說明」。
[16] 楊萬發、鄭仁川、張芳賓、宋欣真、雷憶湘,「染整業水污染防治技術」,經濟部工業局工業污染防治技術服務團,第73~89 頁,1994。
[17] 吳美惠、陳見財、鄭建南、張芳賓,「廢水處理系統改善擴建輔導案例-電鍍業」,經濟部工業局,第44~71頁,1997。
[18] 陳見財、黃雪娟、莊敏芳編撰,「金屬表面處理業整合性污染防治技術手冊-電鍍業」,經濟部工業局,第2-1~2-24頁,2002。
[19] 台灣區電鍍工業同業公會。
[20] 陳範才,「現代電鍍技術」,恩寧國際,2009。
[21] 張允誠、胡如南、向榮,「電鍍手冊(上)」,國防工業出版社,1997。
[22] 賴耿陽譯著,「實用電鍍技術全集」,復漢,1990。
[23] 陳裕龍,「濾布結構對濾材阻力之影響」,碩士論文,化學工程研究所,台灣大學,第1~20頁,1992。
[24] 張錦松等譯,「環工單元操作」,高立,2006。
[25] 劉有台、鍾志宏,「高性能纖維濾材簡介」,化工資訊第8卷第4期,第10~15頁,1994。
[26] 粒狀污染物控制設備,「甲級空氣污染防治專責人員訓練教材」,行政院環境保護署環境保護人員訓練所,第1~90頁,2001。
[27] 詹瑞泰,「短纖混熔噴複合不織布水濾材研究」,紡織工程研究所,逢甲大學,第3~37頁, 2006。
[28] Mostafa Hosseinzadeh、 Mohammad Reza Mehrnia、 and Navid Mostoufi,「Experimental Study and Modeling of Fouling in Immersed Membrane Bioreactor Operating in Constant Pressure Filtration」,Hindawi Publishing Corporation,2013。
[29] 國家教育研究院,「環境科學大辭典」,2002。
[30] D.J. Vernon L.,「Water chemistry」,1982。
[31] Skoog, D. A., D. M. West, and F. J. Holler.,「Fundamentas of Analytical Chemistry」, Sixth Edition, Saunders College,1992。
[32] Thomas Egli and Margarete Bucheli-witschel,「Environmental fate and microbial degradation of aminopolycarboxylic acids」,FEMS Microbiology Reviews,25,第26~106頁,2001。
[33] C.G. van Ginkel et al.,「Biological removal of EDTA inconventional activated-sludge plants operated under alkalineconditions」,Bioresource Techonlogy,59,第151~155頁,1997。
[34] 經濟部標準檢驗局,JIS國家標準(1991)。
[35] Thomas Egli et al.,「Biodegradaation of metal-complexingamino- polycarboxylic acids」, Journal of Bioscience and Bio-engineering,第89~91頁,2001。
[36] Shen,Z.G,Li,X.D,Chen,H.M,Wang,C.C,and Chua,H,「Phytoextraction of Pb from a contaminated soil using high biomass species of plants」,J.Environ,31,第1893~1900頁,2002。
[37] Meers,E.,Hopgood,M.,Lesage,E.,Vervaeke,P.,Tack,F.M.G.,「Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals」,Chemosphere,58,第1011~1022頁,2005。
[38] Vamerali,T.,Bandiera,M.,and Mosca,G.,「Field crops for phytoremediation of metal-contaminated land. A review」,Environ. Chem. Lett.,8,第1~17,2010。
[39] Quartacci M F.,Baker,A.J.M. and Navari-Izzo,F.,「Nitrilotriacetate and citric acid-assisted phytoextraction of cadmium by Indian mustard (brassica juncea (L.) Czernj,Brassicaceae)」,Chemosphere,59,第1249~1255, 2005。
[40] Skoog,D.A.,West,D.M.,Holler,F.J.,「Fundamentals of analytical chemistry 7th edition」,Sunders collage pulishing,第278~300頁,1991。
[41] Tejowulan,R.S.and W.H.Hendershot,「Removal of trace metals from contaminated soils using EDTA incorporating resin trapping techniques」,Environmental pollution,103,第135~142頁,1998。
[42] G.Schwarzenbach,Complexometric Titrations,「London:Chapman and hall」,With permission. Constants are valid at 20℃ and an ionic strength of 0.1,第8頁,1957。
[43] Skoog,D.A.,D.M.West,and F.J.Holler,「Fundamentals of analytical chemistry 8th edition」,Sunders collage pulishing,第290頁,1992。
[44] Tiedje,J.M,and Mason,B.B,「Biodegradation of Nitrilotriacetate(NTA) in Soils」,Soil Sci.Soc.Am.J.,38,第278~283頁,1974。
[45] Bucheli-Witschel,M.,and Egli,T.,「Environmental fate and microbial degradation of aminopolycarboxylic acids」,FEMS Microbiol. Rev.,25,第69~106頁,2001。
[46] 行政院環境保護署,「公告之毒性化學物質一覽表」,列管編號:119-01,第28頁,2014。
[47] 工業技術研究院工業安全衛生技術發展中心,「物質安全資料表光碟資料」,行政院環境保護署、工業技術研究院綠能與環境研究所合設毒災應變諮詢中心,2013。
[48] Xue-song Wang,Yong Qin,「Equilibrium sorption isotherms for of Cu2+ on rice bran」,Process Biochemistry 40,第677~680頁,2005。
[49] Neale C. N.,Bricka R. M. and Allen C. C.,「Evaluating acids and chelating agents for removing heavy metals from contaminated soils」,Enviromental Progress,Vol.16,No.4,1997。
[50] Say-Kee Ong and Chulsung Kim,「Recycling of contaminated EDTA wastewate」,Joumal of Hazardous Materials,B69,第273~286頁,1999。
[51] 馬德柱、何平笙、徐種德、周漪琴著,「高聚物的結構與性能」,北京,科學出版社,第298~305頁,2003。
[52] 胡萍等人,「聚丙烯熱降解性能研究」,湖北,合成材料老化與應用,35卷,第3期,2006。
[53] 傅政編著,「高分子材料強度及破壞行為」,北京,化學工業出版社,第235~242頁,2006。
[54] 李偉法,「回收聚丙烯之物性探討」,碩士論文,有機高分子研究所,台北科技大學,第29~31頁,2008。
指導教授 李俊福 審核日期 2014-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明