參考文獻 |
參考文獻
[1] 豐田汽車,http://www.toyota.com.tw/。
[2] 必翔電動車,http://www.pihsiang.com.tw/。
[3] 電動機車產業網,http://www.lev.org.tw/default.asp。
[4] A. J. Moradewicz, and M. P. Kazmierkowski, “Contactless energy transfer system with FPGA-controlled resonant converter,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3181-3190, 2010.
[5] “Wireless Charging Infrastructure for Electric Vehicles (Technical Insights),” Frost & Sullivan, 2012.
[6] 謝周宇,江朝文,磁共振無線充電系統之共振線圈設計與分析,第十二屆台灣電力電子研討會暨展覽會,台南市,102。
[7] 石金福,張志敏,電動機車用鋰離子電池之特性與發展,電機月刊雜誌,第十二卷,第九期,2002。
[8] “Electric Vehicle Application Handbook For Genesis Sealed-Lead Battery,” Hawker Energy Products Inc., 4th Edition.
[9] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005.
[10] 楊模樺,電動車發展的關鍵技術-電池模組管理系統(上),工業材料雜誌,第267期,2009。
[11] 林振華,林振富編譯,充電式鋰離子電池材料與應用,全華科技圖書股份有限公司,2001。
[12] 蔡瀚章,智慧型控制數位化鋰錳電池充電器之研製,碩士論文,國立中央大學電機工程學系,桃園,2011
[13] 有量科技,http://www.amitatech.com.tw/。
[14] 孫清華,最新可充電電池技術大全(修訂版),全華科技圖書股份有限公司,2003。
[15] D. R. Carroll, “The Winning Solar Car- A Design Guide for Solar Race Car Teams,” 2003.
[16] 周志敏,周紀海,紀愛華,充電器電路設計與應用,人民郵電出版社,2005。
[17] 撲拓科技,www.topology.com.tw。
[18] 電子工程專輯,http://tech.digitmes.com.tw,數位電源技術之架構與應用。
[19] 電子&電腦資訊網,http://www.compotech.com.tw,數位電源時勢所趨。
[20] M. Budhia, G. A. Covic, and J. T. Boys, “Design and optimization of circular magnetic structure for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, 2011.
[21] M. Budhia, J. T. Boys, G. A. Covic, and C. Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, 2013.
[22] André Kurs, Aristeidis Karalis, Robert Moffatt, J. D. Joannopoulos, Peter Fisher, and Marin Soljačić, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science, vol.317 no.5834, pp.83-86, 2007.
[23] T. Imura, H. Okabe, and Y. Hori, “Study on open and short end helical antennas with capacitor in series of wireless power transfer using magnetic resonant coupling”, in Proc. IEEE IECON′09 Conf., pp. 3848-3853, 2009.
[24] T. Imura, and Y. Hori, “Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4746-4752, 2011.
[25] N. Shinohara, Y. Kubo, and H. Tonomura, “Wireless charging for electric vehicle with microwaves,” in Proc. EDPC′13 Conf., pp. 1-4, 2013.
[26] N. Kawashima, “The importance of the development of a rover for the direct confirmation of the existence of ice on the moon,” Trans. Jpn. Soc. Aeronaut. Space Sci., vol. 43, no. 139, pp. 34-35, 2000.
[27] J. S. Hong, “Couplings of asynchronously tuned coupled microwave resonators,” IEE Proc.-Microw. Antennas Propag., vol. 147, no. 5, pp. 354-358, 2000.
[28] D. Perrone, and S. Di Stefano, “Survey of lithium-ion battery performance for potential use in NASA missions,” in Proc. IECEC-97 Conf., vol. 1, pp. 39-41, 1997.
[29] B. Carter, J. Matsumoto, A. Prater, and D. Smith, “Lithium ion battery performance and charge control,” in Proc. IECEC-96 Conf., vol. 1, pp. 363-368, 1996.
[30] G. C. Hsieh, L. R. Chen, and K. S. Huang, “Fuzzy-controlled li-ion battery charge system with active state-of-charge controller,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 585-593, 2001.
[31] A. A. -H. Hussein, and I. Batarseh, “A review of charging algorithms for nickel and lithium battery chargers,” IEEE Trans. Vehicular Technology, vol. 60, no. 3, pp. 830-838, 2011.
[32] C. C. Hua, and M. Y. Lin, “A study of charging control of lead-acid battery for electric vehicles,“ in Proc. ISIE 2000 IEEE International Symposium on Industrial Electronics, vol. 1, pp. 135-140, 2000.
[33] R. C. Cope, and Y. Podrazhansky, “The art of battery charging,” in Proc. Battery Conf. on Applications and Advances, pp. 233-235, 1999.
[34] L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 398-405, 2007.
[35] C. H. Lin , C. Y. Hsieh, K. H. Chen , “A li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1983-1992, 2010.
[36] B. Y. Chen, and Y. S. Lai, “Switching control technique of phase-shift-controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1001-1012, 2010.
[37] M. Marvi, and A. Fotowat-Ahmady, “A fully ZVS critical conduction mode boost PFC,” IEEE Trans. Ind. Electron., vol. 27, no. 4, pp. 1958-1965, 2012.
[38] 梁適安,交換式電源供應器之理論與實務設計(修訂版),全華科技圖書,台北,民國九十七年。
[39] 梁適安譯,高頻交換式電源供應器原理與設計,第二版,全華科技圖書,民國九十一年。
[40] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC-DC conversion,” in Proc. IEEE APEC, pp. 1108-1112, 2002.
[41] B. Yang, “Topology investigation for frond end DC-DC power conversion for distributed power system,” Ph.D. Dissertation, Virginia Tech, 2003.
[42] R. D. Middlebrook, and S. Cuk, “A general unified approach to modeling switching-converter power stage,” in Proc. IEEE Power Electronics Specialists Conf., pp. 73-86, 1976.
[43] P. R. K. Chetty, “Modeling and design of switching regulators,” IEEE Trans. Aerospace and Electronic Systems, vol. AES-18, no. 3, pp. 333-344, 1982.
[44] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “A simple large-signal nonlinear model for fast simulation of zero-current-switch quasi-resonant converters,” in Proc. IEEE PESC′96 Conf., vol. 2, pp. 1087-1091, 1996.
[45] H. K. Lam, and S. C. Tan, “Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter,” IET. Control Theory Appl., vol. 3, no. 8, pp. 1093-1106, 2009.
[46] F. J. Lin, W. J. Hwang, and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 41-52, 1999.
[47] W. Yu, and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, 2004.
[48] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 53, no. 9, pp. 1649-1661, 2006.
[49] Y. Gao, and M. J. Er, “An intelligent adaptive control scheme for postsurgical blood pressure regulation,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 475-483, 2005.
[50] F. J. Lin, P. K. Huang, and C. C. Wang, “An induction generator system using fuzzy modeling and recurrent fuzzy neural network,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260-271, 2007.
[51] I. B. Kucukdemiral, and G. Cansever, “Formalization of a noval Sugeno type adaptive fuzzy sliding mode controller for a class of nonlinear systems,” in Proc. IEEE ICM′05 Conf., pp. 717-720, 2005.
[52] D. F. Specht, “Probabilistic neural network,” Neural Netw., vol. 3, no. 1, pp. 190-118, 1990.
[53] K. Z. Mao, K. -C. Tan, and W. Ser “Probabilistic neural-network structure determination for pattern classification,” IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 1009-1016, 2000.
[54] J. C. Pidre, C. J. Carrillo, and A. E. F. Lorenzo, “Probabilistic model for mechanical power fluctuations in asynchronous wind parks,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 761-768, 2003.
[55] M. Tripathy, R. P. Maheshwari, and H. K. Verma, “Power transformer differential protection based on optimal probabilistic neural network,” IEEE Trans. Power Del., vol. 25, no. 1, pp. 102-112, 2010.
[56] Z. Liu, and H. X. Li, “A probabilistic fuzzy logic system for modeling and control,” IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848-859, 2005.
[57] H. X. Li, and Z. Liu, “A probabilistic neural-fuzzy learning system for stochastic modeling,” IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 898-908, 2008.
[58] M. Chen, and G. A. Rincon-Mora, “Accurate, compact, and power efficient Li-Ion battery charger circuit,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1180-1184, 2006.
[59] G. Hiziroglu, Electromagnetic Field Theory Fundamentals, 2002.
[60] 趙修科,開關電源中磁性元件,遼寧科學技術出版社,2002。
[61] 萬泰麟,非接觸式感應充電技術應用於小家電裝置之研究,國立成功大學電機工程學系,碩士論文,2007。
[62] X. Nan, and C. R. Sullivan., “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE PESC′03 Conf., 2003.
[63] James W. Nilsson, and Susan A. Riedel, Electric Circuits 6th edition, 2000.
[64] 黃淇豪,以同軸變壓器實現之非接觸式供電系統,碩士論文,國立中央大學電機工程學系,桃園,2008。
[65] R. Erickson, and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2001.
[66] 杜冠賢,陳耀銘,吳財福,姜士凱,鋰離子電池充電器研製,第六屆台灣電力電子研討會,2007。
[67] Texas Instruments Inc., “TMS320F28030/28031/28032/28033/28034/ 28035 piccolo microcontrollers, rev B”, 2009.
[68] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo enhanced pulse width modulator (ePWM) module, rev C”, 2009.
[69] Texas Instruments Inc., “TMS320F2803x piccolo system control and interrupts, rev A”, 2009.
[70] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo analog-to- digital converter (ADC) and comparator, rev B”, 2009.
[71] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo serial peripheral interface (SPI), rev B”, 2009.
[72] 黃治瑋,應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達伺服驅動系統,碩士論文,國立中央大學電機工程學系,桃園,2010。
[73] 李坤源,寬輸入電壓範圍之高效率半橋串聯諧振轉換器研製,碩士論文,國立台灣科技大學電子工程系,台北市,2009。
[74] G. C. Hsieh, C. Y Tsai, and S. H. Hsieh, “Design consideration for LLC series-resonant converter in two-resonant regions,” in Proc. IEEE Power Electronics Specialists Conf., pp. 731-736, Jun. 2007.
[75] 李英竹,具前端脈波高度調變調控之串聯諧振轉換器設計,碩士論文,國立台北科技大學電機工程系,台北市,2012。
[76] 王昇龍,智慧型控制數位化串聯諧振轉換器之研製,碩士論文,國立中央大學電機工程學系,桃園,2013。
[77] J. M. Alonso, M. S. Perdigao, D. G. Vaquero, A. J. Calleja, and E. S. Saraiva,“Analysis, design and experimentation on constant-frequency DC-DC resonant converters with magnetic control,” IEEE Trans. Ind. Electron., vol. 27, no. 3, pp. 1369-1382, 2012.
[78] 陳宜宏,實現數位控制之LLC 諧振轉換器,碩士論文,國立台北科技大學電機工程系,台北市,2010。
[79] J. W. Shin and B. H. Cho, “Digitally implemented average current-mode control in discontinuous conduction mode PFC rectifier,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3363-3373, 2012.
[80] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, “Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 462-472, 2011.
[81] 謝士弘,LLC半橋串聯諧振式轉換器之設計考量與研製,碩士論文,國立台灣科技大學電子工程系,台北市,2006。
[82] M. Chen, D. Xu, and M. Matsui, “Study on magnetizing inductance of high frequency transformer in the two transistor forward converter,” in Proc. Power Conversion Conf., vol 2, pp. 597-602, 2002.
[83] “Soft Ferrites and Accessories Data Handbook,” Ferroxcube Inc., 2013
[84] B. H. Lee, M. Y. Kim, C. E. Kim, K. B. Park, and G. W. Moon, “Analysis of LLC resonant converter considering effects of parasitic components,” in Proc. INTELEC Conf., pp. 1-6, 2009.
[85] S. Korotkov, V. Meleshin, R. Miftahutdinov, and S. Fraidlin, “Soft-switched asymmetrical half-bridge DC-DC converter: Steady state analysis. An analysis of switching process,” in Proc. Telecommunications Energy Special Conf., pp. 177-184, 1997.
[86] FQA44N30 Application Note, Fairchild Semiconductor Co.
[87] STPS30L120C Application Note, STMicroelectronics Inc.
[88] M. C. Caponet, F. Profumo, R. W. De Doncker, and A. Tenconi, “Low stray inductance bus bar design and construction for good EMC performance in power electronic circuits,” in Proc. IEEE PESC Conf., vol.2 , pp. 916-921, 2000.
[89] HTY 37.5-P Application Note, LEM Co.
[90] MCP4922 Application Note, Microchip Technology Inc.
[91] 謝曜竹,無電解電容與單級控制之三相具電氣隔離車用電池充電器設計,碩士論文,國立台北科技大學電機工程系,台北市,2012。
[92] F. J. Lin, M. S. Huang, Y. C. Hung, C. H. Kuan, S. L. Wang, and Y. D. Lee, “Takagi-Sugeno-Kang type probabilistic fuzzy neural network control for grid-connected LiFePO4 battery storage system,” IET Power Electron., vol. 6, no. 6, pp. 1029-1040, 2013.
[93] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault tolerant control for six-phase PMSM drive system via intelligent complementary sliding mode control using TSKFNN-AMF,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5747-5762, 2013.
[94] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric gaussian membership functions,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1528-1536, 2007.
[95] C. H. Lee, T. W. Hu, C. T. Lee, and Y. C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proc. IEEE Conf. Fuzzy System, pp. 1496-1502, 2008.
[96] 官啟玄,以TSK機率模糊類神經網路控制之磷酸鋰鐵電池儲能系統之研製,碩士論文,國立中央大學電機工程學系,桃園,2012。
[97] F. J. Lin, P. H. Chou, Y. C. Hung, and W. M. Wang, “Field-programmable gate array-based functional link radial basis function network control for permanent magnet linear synchronous motor servo drive system,” IET Electr. Power Appl., vol. 4, no. 5, pp. 357-372, 2010.
[98] S.J., Yoo, Y.H., Choi, and J.B., Park, “Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach,” IEEE Trans. Circuits and Systems, vol. 53, no. 6, pp. 1381-1395, 2006.
|