摘要(英) |
The purpose of this study was to evaluate the method of the modified artificial aggregates (MAA) used in low-level concrete and the practical market positioning strategy. The practice of this research can be divided into three experimental stages: preparation of modified artificial aggregates, analysis of material properties, and the mix of modified artificial aggregate concrete.
The results show that: (1) The suitable w/s ratio of granulating for manufacturing modified artificial aggregates is 0.27 to 0.33, the molding method of MAA is more effective by pressuring and vibrating at the same time. (2) The properties of MAA compared to that of the natural aggregates with lighter specific gravity, higher water absorption and abrasion rate, however, the soundness, the sand equivalent value and the potential expansion of aggregates from hydration reactions are in compliance with the regulations. (3) When the MAA to replace natural aggregates, the initial workability can meet the demand, however, for specimen using slag replaces 40% cement by weight, the slump loss condition of 30 minutes is not improved. The amount of concrete expansion has not been improved and the compressive strength has not been increased, but the amount of dry shrinkage can be reduced effectively. (4) The slump loss of 30 minutes for the MAA concrete is less than that of concrete using the manufactured sand of waste concrete blocks, and has the lower value of the shrinkage rate, but for the compressive strength, there is no significant difference between the two. (5) Whether adding slag or fly ash, w/b ratio of 0.66,0.70 and 0.90, MAA replace natural fine aggregates of 50% and 100%, the compressive strength of specimens all can meet the target strength of 80 - 210 kgf/cm2. |
參考文獻 |
1. 經濟部礦務局,http://www.mine.gov.tw/intro/chief.asp。
2. 林健三,「廢棄物處理」,文笙書局股份有限公司,2001 年。
3. 行政院環保署,「資源回收再利用年報」,2012 年。
4. 行政院國家永續發展委員會,http://nsdn.epa.gov.tw。
5. 經濟部工業局,http://www.moeaidb.gov.tw/。
6. 台灣綠色生產力基金會,http://www.tgpf.org.tw/。
7. 經濟部工業局,「資源再生產業推動及審查管理計畫」,2013 年。
8. 財團法人台灣營建研究院,「營建物價( Construction Cost Data )」,第六十八期,2008 年。
9. 行政院環境保護署,「廢棄物清理法」,2013 年。
10. 行政院環保署,http://www.epa.gov.tw。
11. 余姵如,「磚製品中摻配鈦沙之較佳配比研究」,碩士論文,國立中央大學土木工程研究所,2009 年。
12. 財團法人台灣綠色生產力基金會,「工業廢棄物資源化發展現況與展望」,2008 年。
13. 經濟部工業局,「資源化工業輔導計畫」,2002-2005 年。
14. 經濟部工業局,「工業廢棄物清除處理與資源化輔導計畫」,2006-2008年。
15. 經濟部工業局,「資源再生產業競爭力提升計畫」,2009-2012 年
16. 經濟部工業局,「資源再生產業推動及審查管理計畫」,2013 年。
17. 二氧化鈦產品統計
http://www.chemnet.com.tw/magazine/200203/index34.htm1
18. 染化雜誌社,染化資訊網站,http://www.dfmg.com.tw/dasp/pigment/pg3-1-1.htm。
19. 丁廷楨,「化學原理及應用基礎第三冊」,1999 年。
20. 杜邦中國二氧化鈦事業部網http://www.dupont.com.cn/tipure/index.html
21. 陳鈾森,「水洗礦尾渣造粒後之粒料特性探討」,碩士論文,國立中央大
學土木工程研究所,2007 年。
22. 白志清,「工業礦渣取代無筋水泥製品之細粒料應用研究」,國立中央
大學土木工程研究所碩士論文,2001 年。
23. 白志清、房性中、吳學禮,「杜邦尾礦渣使用於鋪面基底層績效研究暨
初步成效探討」,中華民國第十屆鋪面工程學術研討會,1999 年。
24. 呂榮翔,「鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研
究」,國立中央大學土木工程研究所碩士論文,2005 年。
25. 張閔揚,「水洗礦尾渣取代水泥製品中細粒料之可行性研究」,國立中
央大學土木工程研究所碩士論文,2007 年。
26. 吳宗翰,「改質人工粒料的應用策略基礎研究」,國立中央大學土木工
程研究所碩士論文,2012 年。
27. S. Moll, S. Bringezu and H. Schütz, “ Resource Use in European Countries Material Flows and Resource Management ”, Wuppertal Institute for Climate, Environment and Energy, Wuppertal (DE), 2005.
28. J. Fiksel, “ Creating Eco-efficient Products and Processes ”, Design for Environment, McGraw-Hill, 1996.
29. J.A. Moya, N. Pardo and A. Mercier, “Energy Efficiency and CO2 Emissions: Prospective Scenarios for the Cement Industry ”, JRC Scientific and Technical Report, EUR 24592 EN, 2010.
30. BRE, “ Developing a Strategic Approach to Construction Waste—20 year strategy ”, Proceedings of the CIB Task Group 39—Deconstruction Meeting, Garston, Watford WD25 9XX (UK), 2006. (available online at: http://www.bre.co.uk/filelibrary/pdf/rpts/waste/ConstructionWasteReport240906.pdf; accessed on 20 February 2013).
31. P. Crowther, “ Design for Buildability and The Deconstruction Consequences ”, Proceedings of the CIB Task Group 39 — Deconstruction Meeting, Karlsruhe, Germany, 2002.
32. 內政部營建署,「營建事業廢棄物再利用種類及管理方式」,2013。
33. R.J. Collins, “ Recycled Aggregates in Ready-mixed Concrete, in: J.W. Llewellyn, H. Davis (Eds.) ”, Proceedings of Sustainable Use of Materials, Building Research Establishment, UK, Papers 1 –2, 1996.
34. M. Tavakoli and P. Soroushian, “ Strengths of Recycled Aggregate Concrete Made Using Field-demolished Concrete As Aggregate ”, ACI Mater. J. 93 (2) 182–190,1996.
35. I.B. Topcu, N.F. Guncan, “ Using Waste Concrete As Aggregate ”, Cement and Concrete Research, 25 (7) 1385–1390, 1995.
36. RILEM 121-DRG, “ Specification for Concrete with Recycled Aggregates ”, Materials and Structures 27 (173) 557–559, 1994.
37. K.J. Schenk, Patent No. WO 2011/142663, The Netherlands, 2011.
38. Amnon Katz,“ Properties of Concrete Made with Recycled Aggregate from Partially Hydrated Old Concrete”, Cement and Concrete Research 33 703–711, 2003.
39. M.V.A. Florea and H.J.H. Brouwers,“ Properties of Various Size Fractions of Crushed Concrete Related to Process Conditions And Re-use ”, Cement and Concrete Research 52 11–21, 2013.
40. 蘇南、王博麟,「廢混凝土回收粗粒料品質與再生混凝土工程性質之探討」,中國土木水利工程學刊12 卷3 期,2000。
41. 王和源,「Study on The Aggregate Recycling And Its Application to The concrete」,中國工程師學會高雄分會會刊,第十卷,第一期,第33~39 頁,2002。
42. T.C. Hansen,“ Recycling of Demolished Concrete and Masonry ”, RILEMReport 6, E&FN Spon, Bodmin, UK, 1992.
43. K.K. Sagoe-Crentsil, T. Brown and A.H. Taylor,“ Performance of Concrete Made with Commercially Produced Coarse Recycled Concrete Aggregate”, Cement and Concrete Research, 31 707–712, 2001.
44. W. Fleischer and M. Ruby,“ Recycled Aggregates from Old Concrete Highway Pavements”, in: R.K. Dhir, T.G. Jappy (Eds.), ExploitingWastes in Concrete—Proceedings of International Seminar, Dundee, Scotland, Thomas Telford, UK, 151– 161, 1999.
45. C.S. Poon, Z.H. Shui, L. Lam, H. Fok and S.C. Kou,“ Influence of Moisture States of Natural and Recycled Aggregates On The Slump and Compressive Strength of Concrete ”, Cement and Concrete Research 34 31–36, 2004.
46. Juang Yi-Ping ,“ The Mechanical Properties of Recycled Aggregate Concrete ”, National Kaohsiung University of Applied Sciences, Disaster Prevention Research Institute of Civil Engineering and Technology,2010.
47. M.B. de Oliveira and E. Vazquez,“ The Influence of Retained Moisture in Aggregate from Recycling on The Properties of New Hardened Concrete ”, Waste Manag, 16 113– 117, 1996.
48. S. K. Singh, Roorkee and P. C. Sharma,“ Use of Recycled Aggregates in Concrete - A Paradigm Shift ”, New Building Materials & Construction World,2007.
49. Y.L. Wong, L. Lam, C.S. Poon and F.P. Zhou,“ Properties of Fly Ash-modified Cement Mortar-aggregate Interface ”, Cement and Concrete Research, 29 1905 – 1913, 1999.
50. A. Katz, “ Properties of Lightweight Aggregate Concrete ”, unpublished results, 1997.
51. I. Soroka and C. Jaegerman,“ The Properties and Possible Uses of Concrete Made with Lightweight Aggregate from the Golan Heights ”, Research Report 017- 192, Building Research Station, Technion-Israel Institute of Technology, Haifa, Israel, 1972 (in Hebrew). |