博碩士論文 100224020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.148.105.131
姓名 林育如(Yu-ru Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位
(Identification, Characterization and Gene Mapping of Arabidopsis thaliana hs49 and 78hs Mutants)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位
★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位★ 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究
★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現
★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究
★ 蛋白質法尼脂化修飾參與植株耐熱反應★ 探討ETO1-LIKE1(EOL1)及EOL2參與阿拉伯芥幼苗光形態發育之功能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 植物因無法自由的移動,所以時刻都有可能面臨不適合生存的環境逆境。高溫逆境為主要的環境逆境之一。高溫會影響植物的生長及其產量。植物為了抵抗高溫逆境,必需演化出適當的保護機制。為了瞭解植物所演化出抵禦高溫逆境的機制,以及調控這些機制的遺傳因子,我們以前向式遺傳研究法(forward genetics approach),利用化學突變劑甲基磺酸乙酯(ethylmethane sulfonate, EMS)篩選出兩株突變植株。其一為對長時間高溫敏感之突變株,命名為heat sensitive 49 (hs49)。其二為可耐受短時間熱休克逆境之突變株,命名為78hs (78 heat shock)。實驗結果顯示,hs49突變位址,是在阿拉伯芥AGI map 第五條染色體上,25,860 kb - 25,966 kb的區間範圍內。78hs突變位址,則是在阿拉伯芥編號At5g40280基因的第二個intron上,第134個鹼基由A變成T的突變點。此突變點經序列分析後,發現其為RNA splice辨認之處。過去有關At5g40280的研究指出,此基因突變或表現量降低時,會使植物對ABA具有過度敏感的性狀,且比野生種植株更能耐受乾旱逆境。生理實驗發現的結果也顯示出,78hs確實對ABA過度敏感,對乾旱逆境也有更高的耐受能力。然而,At5g40280如何保護植物免於高溫傷害之機制,仍然未知。
摘要(英) Plants, being immobile and can not escape from their growing environments, are vulnerable to various environmental stresses and must develop effective protecting mechanisms for survival. One of the most typical environmental stresses plants encounter is high temperature stress. Heat temperature can affect plant growth and development. In aggriulature, high temperature can affect crop yield. In order to identify the genetic determinant that are essential for plant to cope with high temperature stress, hence better improve heat tolerance in crop, we have used a forward genetics approach to screen for mutants of Arabidopsis that have altered responses to high temperatures. Two mutants were isolated after ethyl-methane sulfonate (EMS)-mutagenesis. While hs49 (heat sensitive 49) is isolated because of its inability to tolerate sustained high temperature stress, 78hs (78 heat shock) is isolated because of its ability to tolerate heat shock stress. To identify the mutated loci of hs49 and 78hs, map-based cloning procedures was conducted. Results indicated that hs49 is located at a region between AGI map 25,860 kb-25,966 kb of the chromosome Ⅴ. The 78hs locus is mapped to At5g40280 gene. The mutation of 78hs is a single nucleotide change from A to T at the RNA splicing recongnized site of the 2nd intron. Previous studies have shown that At5g40280 null or down-regulrated plants are hypersensitive to ABA and can tolerate drought stress compare to those of wild-type. Physiological experiments showed that 78hs exhibits those previously described phenotypes. Nevertheless, the mechanisms by which 78HS contributes to protect plants against high temperature injuries are still unknown.
關鍵字(中) ★ 阿拉伯芥
★ 基因定位
★ 熱休克
★ 巴拉刈
★ 離層酸
關鍵字(英)
論文目次 中文摘要 I
英文摘要 II
致謝 III
總目錄 IV
圖目錄 VI
表目錄 VII
緒論 1
材料與方法 5
1. 突變株顯隱性之鑑定 5
2. 突變株之位址定位 6
3. 突變株之核苷酸定序 10
4. cDNA製備 11
5. 光照條件對hs49植物生長及其耐熱性之測試 13
6. 巴拉刈(paraquat, MV)對hs49生長表現型之測試 13
7. hs49和78hs幼苗對抗離層酸(abscisic acid, ABA)逆境之測試 14
8. 鹽分逆境對hs49與78hs生長之測試 14
9. 熱休克處理(heat shock)對78hs表現型之測試 14
10. 78hs耐受熱休克性狀與不耐受長時間熱處理性狀之驗證 14
11. 78hs成株植物晚開花現象之觀察 15
12. 78hs成株植物耐乾旱現象之觀察 15
結果 16
1. hs49突變株對於持續性高溫處理之表現型 16
2. hs49突變株之顯、隱性鑑定 16
3. hs49之位址定位 16
4. 光照條件對hs49植物生長及其耐熱性之測試 17
5. 巴拉刈(paraquat, MV)對hs49生長表現型之測試 18
6. hs49幼苗對抗離層酸 (abscisic acid, ABA)逆境之測試 18
7. 鹽分逆境對hs49之測試 19
8. 78hs突變株之表現型 19
9. 78hs突變株之顯、隱性鑑定 20
10. 78hs之位址定位 20
11. 78hs 突變株之核苷酸定序 21
12. 78hs RNA splicing3’端辨認剪切位置之確認 22
13. 78hs耐受熱休克性狀與不耐受長時間熱處理性狀之驗證 22
14. 78hs成株植物晚開花之測試 23
15. 78hs幼苗對抗離層酸(abscisic acid, ABA)逆境之測試 23
16. 78hs成株植物耐乾旱之測試 24
17. 鹽分逆境對78hs之測試 24
討論 25
1. hs49突變基因定位及生理實驗之探討 25
2. 78hs基因功能之探討 25
3. 總結 29
文獻參考 31
參考文獻 Brady, M.S., Sarkar, S.F., Bonetta, D. and McCourt, P. (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. The plant journal 34, 67-75.
Bush, W., Wunderlich, M. and Schöffl, F. (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana, Plant J. 41, 1–14.
Chen, H., Hwang, J.E., Lim, C.J., Kim, D.Y., Lee, S.Y. and Lim, C.O. (2010) Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochemical and Biophysical Research Communications 401, 238–244.
Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S. and McCout, P. (1996) Protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science. 273, 1239–1241.
Chao, X., Wang, D-p., Gong, Z-h., Liang, Y., and Zhao, J. (2007) Functional analysis of Arabidopsis transcriptional factor in heat stress tolerance. Acta Bot Boreal Occident Sin. 27, 1305–1310.
Chang, C.C., Ball, L., Fryer, M.J., Baker, N.R., Karpinski, S. and Mullineaux, P.M. (2004) Induction of ASCORBATE PEROXIDASE 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis. The Plant Journal 38, 499–511.
Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulae, V., Schlauch, K. and Mittler, R. (2005) Cytosolic ascorbate peroxidase 1 is a
32
central component of the reactive oxygen network of Arabidopsis, Plant Cell. 17, 268–281.
Duan1, Y.F., Zhang, W.S., Li1, B., Wang, Y., Li, K.X., Sodmergen, Han, C.Y., Zhang, Y.Z. and Li, X.. (2010) An endoplasmic reticulum response pathway mediates
programmed cell death of root tip induced by water stress in Arabidopsis. New Phytologist. 186, 681–695.
Fryer, M.J., Ball, L., Oxborough, K., Karpinski, S., Mullineaux, P.M. and Baker, N.R. (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess lightstress reveals a functional organisation of Arabidopsis leaves. The Plant Journal 33, 691–705.
Gong, M., Li, Y.J. and Chen, S.Z. (1998) Abscisic acid induced thermotolerance in maize seedlings is mediated by Ca2+ and associated with antioxidant systems. Journal of Plant Physiology. 153, 488–496.
Goritschnig, S., Weihmann, T., Zhang, Y., Fobert, P., McCourt, P. and Li, X. (2008) A Novel Role for Protein Farnesylation in Plnat Inntate Immunity. Plant Physiology. 148, 348-357.
Hamilton, D.W.A., Hills, A., Köhler, B. and Blatt, M.R. (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc. Natl. Acad. Sci. USA 97, 4967–4972.
Han, H.J., Peng, R.H., Zhu,B., Fu, X.Y., Zhao,W., Shi, B. and Yao, Q.H. (2014) Gene expression profiles of arabidopsis under the stress of methyl viologen: a microarray analysis. Mol Biol Rep 41,7089–7102.
Hwang, S.M., Kim, D.W., Woo, M. S., Jeong, H.S., Son, Y.S., SAkhter, S., Choi, G.J. and Bahk, J.D. (2014) Functional characterization of Arabidopsis HsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant,
33
Cell and Environment. 37, 1202–1222
Jander, G., Norris, S.R., Rounsley, S.D., Bush, D.F., Levin, I.M. and Last, R.L. (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129, 440-450.
Jacoby, B. (1999) Mechanism involved in salt tolerance of plants. In ‘Handbook of plant and crop stress’. (Ed M Pessarakli) pp. 97-124.
Jia,W., Wang, Y., Zhang, S. and Zhang, J. (2002) Salt‐stress‐induced ABA accumulation is more sensitively triggered in roots than in shoots. Journal of Experimental Botany. 53 (378), 2201-2206.
Karpinski, S., Escobar, C., Karpinska, B., Creissen, G. and Mullineaux, P. (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. The Plant Cell 9, 627–640.
Karpinski, S., Reynolds, H., Karpinska, B., Wingsle, G., Creissen, G. and Mullineaux, P. (1999) Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 23, 654–657.
Larkindale, J. and Knight, M.R. (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128, 682–695.
Lim, C.J., Yang, K.A., Hong, J.K., Choi, J.S., Yun D.-J., Hong, J.C., Chung, W.S., Lee, S.Y., Cho, M.J. and Lim, C.O. (2006) Gene expression profiles during heat acclimation in Arabidopsis thaliana suspension-culture cells, J. Plant Res. 119, 373–383.
Lim, C.J., Hwang, J.E., Chen, H., Hong, J.K., Yang, K.A., Choi, M.S., Lee, K.O.,
Chung, W.S., Lee, S.Y. and Lim, C.O. (2007) Over-expression of the Arabidopsis DRE/CRT-binding transcription factor DREB2C enhances thermotolerance, Biochem.
34
Biophys. Res. Commun. 362, 431–436.
Chen, H., Hwang, J.E., Lim, C.J., Kim, D.Y., Lee, S.Y. and Lim, C.O. (2010) Arabidopsis DREB2C functions as a transcriptional activator of HsfA3 during the heat stress response. Biochemical and Biophysical Research Communications 401, 238–244.
Lee, S.M. and Park, C.M. (2012) Regulation of reactive oxygen species eneration under drought conditions in Arabidopsis. Plant Signaling & Behavior .7:6, 599-601.
Liu, X. and Huang, B. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science. 40,503–510.
Locato, V., Gadaleta, C., Gara, L.D. and De Pinto, M.C. (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant Cell Environ.31,1606–1619.
MacRobbie, E.A.C. (1998) Signal transduction and ion channels in guard cells. Philos. Trans. R. Soc. Lond. 1374, 1475–1488.
Nakashima, K., Shinwari, Z.K., Sakuma, Y., Seki, M., Miura, S., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and highsalinity-responsive expression, Plant Mol. Biol. 42, 657–665.
Niu, X., Bressan, R. A., Hasegawa, P. M. and Pardo, J. M. (1995) Ion Homeostasis in NaCl Stress Environments Plant Physiol.109, 735–742
Nishizawa, A., Yabuta, Y., Yoshida, E., Maruta, T., Yoshimura, K. and Shigeoka, S. (2007) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535-547.
Panchuk, I.I., Volkov R.A. and Schőffl, F. (2002) Heat stress and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129, 838–853.
35
Pei, Z. M., Ghassemian, M., Kwak, C.M., McCourt, P. and Schroeder, J.I. (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science. 282, 287–290.
Pei, Z. M., Murata, Y., Benning, G., Thomine, S., Klüsener, B., Allen, G.J., Grill, E., and Schroeder, J.I. (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature. 406, 731–734.
Pei, Z. M., Kuchitsu, K., Ward, J. M., Schwarz, M. and Schroeder, J. I. (1997) Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. .Plant Cell 9, 409-423.
Peters, J. L., Cnudde, F. and Gerats, T. (2003) Forward genetics and map-based cloning approaches. TRENDS in Plant Science. 8, 1360-1385.
Phee, B.K., Cho,J.H., Park, S., Jung, J.H., Lee, Y.H., Jeon, J.S., Bhoo, S.H. and Hahn, T.R. (2004) Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress. Proteomics. 4, 3560–3568.
Riechmann J.L., Heard J., Martin G., Reuber L., Jiang C. and Keddie J., Yu G. (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 290, 2105–2110.
Robertson, A.J., Ishikawa, M., Gusta, L.V. and MacKenzie, S.L. (1994) Abscisic Acid-lnduced Heat Tolerance in Bromus inermis Leyss Cell-Suspension Cultures. Plant Physiol. 105, 181-190.
Rossel, J.B., Walter, P.B., Hendrickson, L., Chow, W.S., Poole, A., Mullineaux, P.M. and Pogson, B.J. (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant, Cell and Environment 29, 269–281. Suzuki, N. and Mittler, R. (2006) Reactive oxygen species and temperature stresses: A
36
delicate balance between signaling and destruction. Physiologia Plantarum. 126, 45–51.
Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K. and Yamaquchi-Shinozaki, K. (2005) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. PNAS. 103, 18822-18827.
Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K. and Yamaguchi- Shinozaki, K. (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression, Proc. Natl. Acad. Sci. USA 103,18822–18827.
Sung, D.Y., Kaplan, F., Lee, K.J. and Guy, C.L. (2003) Acquired tolerance to temperature extremes. Trends Plant Sci. 8, 179–187.
Sangwan, V., Orvar, B.L., Beyerly, J., Hirt, H. and Dhindsa, R.S. (2002) Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. The Plant Journal. 31(5), 629-638.
Schroeder, J.I., Kwak, J.M. and Allen, G.J. (2001b) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature. 410, 327–330.
Schramm, F., Larkindale, J., Kiehlmannn, E., Ganguli, A., Englich, G., Vierling, E. and von Koskull-Döring, P. (2008) A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis,
Plant J. 53, 264–274.
Wahid, A., Gelani, S., Ashraf, M. and Foolad, M.R. (2007) Heat tolerance in plants: an overview. Environ Exp Bot.61, 199–233.
Wang, Y., Ying, J., Kuzma, M., Chalifoux, M., Sample, A., McArthur, C., Uchacz, T., Sarvas, C., Wan, J., Dennis, D. T., McCourt, P. and Huang, Y. (2005) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. The plant
37
journal.43, 413-424.
Wang, L.C. (2006) The effects of HIT1, a vesicle tethering factor homolog, on tip growth and the raw mapping of hit2 locus in Arabidopsis. Master Thesis, Grauduate schoolof Life Science, National Central University.
Wang, L.C., Yeh, C.H., Ronald, J.S., Lee, Y.Y., Lu, C.A. and Wu, S.J. (2008) Arabidopsis HIT1, a putative homolog of yeast tethering protein Vps53p, is required for pollen tube elongation. Botanical Studies. 49, 25-32.
Wang, L.C., Tsai, M.C., Chang, K.Y., Fan, Y.S., Yeh, C.H. and Wu, S.J. (2011) Involvement of the Arabidopsis HIT1/AtVPS53 tethering protein homologue in the acclimation of the plasma membrane to heat stress. Journal of Experimental Botany. doi:10.1093.
Wu, S.J., Locy, R.D., Shaw, J.J., Cherry, J.H. and Singh, N.K. (2000) Mutantion in Arabidopsis HIT1 locus causing heat and osmotic hypersensitivity. J. Plant Physiol. 157, 543-547.
Wu, S.J., Wang, L.C., Yeh, C.H, Lu, C.A. and Wu, S.J. (2010) Isolation and characterization of the Arabidopsis heat-intolerant2 (hit2) mutant reveal the essential role of the nuclear export receptor EXPORTIN1A (XPO1A) in plant heat tolerance. New Phytologist. 186, 833–842. Wang, L.C., Wu, J.R., Chang, W.L., Yeh, C.H., Ke, Y.T., Lu, C.A. and Wu, S.J.(2013) Arabidopsis HIT4 encodes a novel chromocentre-localized protein involved in the heat reactivation of transcriptionally silent loci and is essential for heat tolerance in plants. Journal of Experimental Botany. 64(6), 1689-701.
Xiong, L., Ishitani, M., Lee, H. and Zhu, J.K. (2002) The Arabidopsis LOS5/ABA3 Locus Encodes a Molybdenum Cofactor Sulfurase and Modulates Cold Stress– and Osmotic Stress–Responsive Gene Expression. The Plant Cell. 13, 2063-2083.
38
Xu, C. and Huang, B. (2008) Root proteomic responses to heat stress in two Agrostis grass species contrasting in heat tolerance.J Plant Physiol.59, 4183–4194.
Yamaguchi-Shinozaki, K. (2006) Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression, plant Cell 18, 1292–1309.
Yoshida, T., Sakuma, Y., Todaka, D., Maruyama, K., Qin, F., Mizoi, J., Kidokoro, S., Fujita, Y., Shinozaki, K. and Yamaquchi-Shinozaki, K. (2008) Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochemical and Biophysical Research Communications. 368, 515-521.
Zhang, Y. and Li, X. (2005) A putative nucleoporin 96 is required for bath defense and constitutive resistance responses mediated by suppressor of npr1-1, constitutive1. Plant Cell. 17(4), 1306-16.
指導教授 吳少傑 審核日期 2014-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明