博碩士論文 100224018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.142.124.83
姓名 辜楚涵(Chu-han Gu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 蝴蝶蘭開花相關基因PaCOL1 啟動子之特性分析
(Characterization of the Promoter of PaCOL1, a Flowering-related Gene in Phalaenopsis Aphrodite)
相關論文
★ 第三群LEA蛋白質表現與功能分析★ 水稻小分子量熱休克蛋白質Oshsp16.9A之N端區域功能性分析
★ 植物逆境蛋白質基因啟動子與功能分析★ 植物受溫度調控之基因的功能與機制分析
★ 錯誤褶疊蛋白質誘導之擬熱休克反應機制之探討★ 受熱與ABA調控水稻基因-OsRZFP1之生理功能分析
★ 受熱與ABA調控基因AtRZFP33之生理功能分析★ 水稻第一族小分子量熱休克蛋白質OsHSP16.9A及OsHSP18.0之生理功能分析
★ 植化物紫草素在小鼠皮膚上增加血管通透性之研究★ 蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析
★ 利用水稻HSP17.3啟動子探討阿拉伯芥熱休克因子在逆境下對細胞內蛋白質反應之角色分析★ 分析水稻 RING 鋅手指蛋白質 OsRZFP34 與其正向調控蛋白質之交互作用
★ 水稻小分子量熱休克蛋白質- OsHSP16.9A在水稻種子耐熱性之功能分析★ Oryzasin 1 在水稻種子耐熱性之功能分析
★ 水稻熱休克蛋白質OsHSP16.9A與OsHSP101之交互作用分析★ 水稻小分子量熱休克蛋白質—OsHSP16.9A關鍵胺基酸分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為了在分子層面上了解蝴蝶蘭開花的機制,我們針對一個蝴蝶蘭中可能和控制開花相關的基因Phalaenopsis aphrodite CONSTANS-LIKE 1 (PaCOL1)進行研究。在胺基酸序列的分析上發現PaCOL1含有一個B-box domain和一個CCT domain。在洋蔥表皮細胞的綠螢光蛋白 (green fluorescent protein, GFP)表現位置分析的結果中發現,PaCOL1蛋白質全長 (PaCOL1-GFP)以及去除B-box domain的PaCOL1蛋白質 (PaCOL1ΔB-box-GFP)皆集中表現在細胞核裡,但是去除CCT domain的PaCOL1蛋白質 (PaCOL1ΔCCT-GFP)則擴散表現於細胞質中。
對PaCOL1啟動子 (pPaCOL1)序列進行分析發現一段和阿拉伯芥的evening element (EE, AAAATATCT)還有evening element-LIKE (EEL, AATATCT)相似的序列,命名為PEEL (ATATCT)。為了瞭解PaCOL1啟動子受誘導活化的環境條件,我們建構pPaCOL1:GUS質體並利用阿拉伯芥原生質體短暫表現系統進行分析。結果顯示PaCOL1啟動子在常溫及長日照下的環境具有最高的表現活性,且其活性隨著時間持續上升,並且在黑暗期過後活性會明顯提升;在短日照下的表現活性較長日照下低,但出現韻律性表現的現象;在低溫的環境下,啟動子的活性也大幅降低。另外我們也將pPaCOL1:GUS轉殖到阿拉伯芥中,染色結果發現GUS反應集中在側根尖、泌液孔及葉原基等部位。
我們建構去除PEEL (pPaCOL1ΔPEEL)以及黏合4個PEEL (4PEEL-pPaCOL1)的啟動子片段,另外還有黏合4個EE (4EE-pPaCOL1)做為對照組的啟動子片段,同樣利用阿拉伯芥原生質體短暫表現系統進行活性分析。結果發現三種不同的啟動子片段卻表現出相似的活化情形:活性提升的程度相近但皆比全長啟動子活性提升的程度低,另外都具有韻律性表現現象。同樣將三種啟動子表現GUS轉殖到阿拉伯芥中,染色結果發現GUS反應較pPaCOL1:GUS轉殖株弱,而且主要只在側根尖發現GUS反應。推測PEEL可能並非具有功能的element,而對PaCOL1啟動子序列進行修改可能造成其無法正常活化。
摘要(英) To understand the flowering mechanism of Phalaenopsis, we focused on characterizing a putative flowering-related gene, Phalaenopsis amabilis CONSTANS-LIKE 1 (PaCOL1). PaCOL1 protein contains one B-box domain and one CCT domain. The results of green fluorescent protein (GFP) localization experiment showed that PaCOL1-GFP and PaCOL1ΔB-box-GFP fusion proteins were both localized in the nucleus of onion epidermal cells while PaCOL1ΔCCT-GFP fusion protein was distributed in cytoplasm.
By analyzing the sequence of the predicted promoter region (~1.8kb) of PaCOL1 (pPaCOL1), we found that pPaCOL1 contains an evening element-like sequence (PEEL, ATATCT), which is similar to that of the Arabidopsis evening element (EE, AAAATATCT) and EEL (AATATCT). To investigate the conditions for pPaCOL1 activation, a PaCOL1:GUS reporter construct was created for the Arabidopsis thaliana protoplasts transient expression assay. The results showed that the activity of pPaCOL1 was higher under long day condition. It continued rising with time and rose significantly during dark period. Under short day period, the activity was much lower but showed an additional rhythmic expression pattern. We also found that the activity dropped drastically after low temperature treatment. We further introduced pPaCOL1-GUS construct into Arabidopsis. The results of histochemical expression suggested that PaCOL1 was mainly expressed in lateral root tips, hydathodes and leaf primordium.
To examine whether PEEL was functional, pPaCOL1ΔPEEL-GUS, 4PEEL-PaCOL1-GUS and 4EE-pPaCOL1-GUS constructs were created and analyzed by transient expression assay. The three different promoters showed similar rhythmic expression patterns. The histochemical expression had the same result. All three transgenic lines had weak GUS reaction and was only seen in lateral root tips.
關鍵字(中) ★ 蝴蝶蘭
★ 開花
★ 啟動子
關鍵字(英) ★ Phalaenopsis
★ PaCOL1
★ Flowering
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 V
縮寫對照表 VI
前言 1
研究背景與目的 5
材料與方法 8
結果 26
討論 31
參考文獻 37
圖表 45
附錄 51
參考文獻 Adrian, J., Farrona, S., Reimer, J. J., Albani, M. C., Coupland, G., & Turck, F. (2010). cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. The Plant Cell Online 22, 1425-1440.

Alabadı́, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P., & Kay, S. A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880-883.

Alexandre, C. M., & Hennig, L. (2008). FLC or not FLC: the other side of vernalization. Journal of Experimental Botany 59, 1127-1135.

Aloni, R., Schwalm, K., Langhans, M., & Ullrich, C. I. (2003). Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216, 841-853.

An, H., Roussot, C., Suárez-López, P., Corbesier, L., Vincent, C., Piñeiro, M., Hepworth, S., Mouradov, A., Justin, S., Turnbull, C. & Coupland, G. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131, 3615-3626.

Bastow, R., Mylne, J. S., Lister, C., Lippman, Z., Martienssen, R. A., & Dean, C. (2004). Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427, 164-167.
Bucher, P. (1990). Weight matrix descriptions of 4 eukaryotic RNA Polymerase-II promoter elements derived from 502 unrelated promoter sequences. Journal of Molecular Biology. 212, 563–578.

Cheng, X. F., & Wang, Z. Y. (2005). Overexpression of COL9, a CONSTANS‐LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. The Plant Journal 43, 758-768.

Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., & Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.

Datta, S., Hettiarachchi, G. H. C. M., Deng, X. W., & Holm, M. (2006). Arabidopsis CONSTANS-LIKE3 is a positive regulator of red light signaling and root growth. The Plant Cell Online 18, 70-84.

Diallo, A., Kane, N., Agharbaoui, Z., Badawi, M., & Sarhan, F. (2010). Heterologous expression of wheat VERNALIZATION 2 (TaVRN2) gene in Arabidopsis delays flowering and enhances freezing tolerance. Plos One 5, e8690.

Dowson‐Day, M. J., & Millar, A. J. (1999). Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. The Plant Journal 17, 63-71.

Dunlap, J. C. (1990). Closely watched clocks: molecular analysis of circadian rhythms in Neurospora and Drosophila. Trends in Genetics 6, 159-165.
Fornara, F., de Montaigu, A., & Coupland, G. (2010). SnapShot: Control of flowering in Arabidopsis. Cell 141, 550-550.

Gelinas, R., Endlich, B., Pfeiffer, C., Yagi, M., and Stamatoyannopoulos, G. (1985). G-substitution to a-substitution in the distal CCAAT box of the a-gamma-globin gene in greek hereditary persistence of fetal hemoglobin. Nature 313, 323–325.

Greb, T., Mylne, J. S., Crevillen, P., Geraldo, N., An, H., Gendall, A. R., & Dean, C. (2007). The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Current Biology 17, 73-78.

Harmer, S. L., Hogenesch, J. B., Straume, M., Chang, H. S., Han, B., Zhu, T., Wang, X., Kreps, J.A. & Kay, S. A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113.

Hassidim, M., Harir, Y., Yakir, E., Kron, I., & Green, R. M. (2009). Over-expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta 230, 481-491.

Imaizumi, T., & Kay, S. A. (2006). Photoperiodic control of flowering: not only by coincidence. Trends in Plant Science 11, 550-558.

Jaeger, K. E., & Wigge, P. A. (2007). FT protein acts as a long-range signal in Arabidopsis. Current Biology 17, 1050-1054.

Kay, S. A. (1992). Circadian-regulated cab gene transcription in higher plants. Molecular Genetics of Biological Rhythms 4, 73.

Lagarde, D., Basset, M., Lepetit, M., Conejero, G., Gaymard, F., Astruc, S., & Grignon, C. (1996). Tissue‐specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. The Plant Journal 9, 195-203.

Lazaro, A., Valverde, F., Piñeiro, M., & Jarillo, J. A. (2012). The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. The Plant Cell Online 24, 982-999.

Ledger, S., Strayer, C., Ashton, F., Kay, S. A., & Putterill, J. (2001). Analysis of the function of two circadian‐regulated CONSTANS‐LIKE genes. The Plant Journal 26, 15-22.

Ljung, K., Hull, A. K., Celenza, J., Yamada, M., Estelle, M., Normanly, J., & Sandberg, G. (2005). Sites and regulation of auxin biosynthesis in Arabidopsis roots. The Plant Cell Online 17, 1090-1104.

Lu, S. X., & Tobin, E. M. (2011). Chromatin remodeling and the circadian clock: Jumonji C-domain containing proteins. Plant Signal Behav 6, 810-814.

Marín, I. C., Loef, I., Bartetzko, L., Searle, I., Coupland, G., Stitt, M., & Osuna, D. (2011). Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 233, 539-552.

Michael, T. P., & McClung, C. R. (2002). Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiology 130, 627-638.

Michael, T. P., & McClung, C. R. (2003). Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiology 132, 629-639.

Michaels, S. D., & Amasino, R. M. (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. The Plant Cell Online 11, 949-956.

Michaels, S. D. (2009). Flowering time regulation produces much fruit. Current Opinion in Plant Biology 12, 75-80.

Mikkelsen, M. D., & Thomashow, M. F. (2009). A role for circadian evening elements in cold‐regulated gene expression in Arabidopsis. The Plant Journal 60, 328-339.

Moore MD, R. Y. (1997). Circadian rhythms: basic neurobiology and clinical applications. Annual Review of Medicine 48, 253-266.

Morris, K., Thornber, S., Codrai, L., Richardson, C., Craig, A., Sadanandom, A., Thomas, B. & Jackson, S. (2010). DAY NEUTRAL FLOWERING represses CONSTANS to prevent Arabidopsis flowering early in short days. The Plant Cell Online 22, 1118-1128.

Mouradov, A., Cremer, F., & Coupland, G. (2002). Control of flowering time interacting pathways as a basis for diversity. The Plant Cell Online 14, S111-S130.

Perales, M., & Más, P. (2007). A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock. The Plant Cell Online 19, 2111-2123.

Robson, F., Costa, M. M. R., Hepworth, S. R., Vizir, I., Reeves, P. H., Putterill, J., & Coupland, G. (2001). Functional importance of conserved domains in the flowering‐time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. The Plant Journal 28, 619-631.

Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carré, I. A., & Coupland, G. (1998). The late elongated hypocotyl Mutation of Arabidopsis Disrupts Circadian Rhythms and the Photoperiodic Control of Flowering. Cell 93, 1219-1229.

Somers, D. E., Webb, A. A., Pearson, M., & Kay, S. A. (1998). The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485-494.

Song, Y. H., Lee, I., Lee, S. Y., Imaizumi, T., & Hong, J. C. (2012). CONSTANS and ASYMMETRIC LEAVES 1 complex is involved in the induction of FLOWERING LOCUS T in photoperiodic flowering in Arabidopsis. The Plant Journal 69, 332-342.

Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116-1120.

Sung, S., & Amasino, R. M. (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427, 159-164.
Takada, S., & Goto, K. (2003). TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. The Plant Cell Online 15, 2856-2865.

Tiwari, S. B., Shen, Y., Chang, H. C., Hou, Y., Harris, A., Ma, S. F., McPartland, M., Hymus, G. J., Adam, L., Marion, C., Belachew, A., Repetti, P. P., Reuber, T. L., & Ratcliffe, O. J. (2010). The flowering time regulator CONSTANS is recruited to the FLOWERING LOCUS T promoter via a unique cis‐element. New Phytologist 187, 57-66.

Trevaskis, B., Hemming, M. N., Dennis, E. S., & Peacock, W. J. (2007). The molecular basis of vernalization-induced flowering in cereals. Trends in plant science 12, 352-357.

Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., & Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003-1006.

Wang, Y., Wu, J. F., Nakamichi, N., Sakakibara, H., Nam, H. G., & Wu, S. H. (2011). LIGHT-REGULATED WD1 and PSEUDO-RESPONSE REGULATOR9 form a positive feedback regulatory loop in the Arabidopsis circadian clock. The Plant Cell Online 23, 486-498.

Wang, H., Zhang, Z., Li, H., Zhao, X., Liu, X., Ortiz, M., Lin, C. & Liu, B. (2013). CONSTANS-LIKE 7 regulates branching and shade avoidance response in Arabidopsis. Journal of Experimental Botany 64, 1017-1024.
Wang, Y., Li, L., Ye, T., Lu, Y., Chen, X., & Wu, Y. (2013). The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. Journal of Experimental Botany 64, 675-684.

Wang, Z. Y., & Tobin, E. M. (1998). Constitutive Expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) Gene disrupts circadian rhythms and suppresses its own expression. Cell 93, 1207-1217.

Wenkel, S., Turck, F., Singer, K., Gissot, L., Le Gourrierec, J., Samach, A., & Coupland, G. (2006). CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis.The Plant Cell Online 18, 2971-2984.

Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., & Dubcovsky, J. (2003). Positional cloning of the wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences 100, 6263-6268.

Yan, L., Loukoianov, A., Blechl, A., Tranquilli, G., Ramakrishna, W., SanMiguel, P., Bennetzen, J.L., Echenique, V. & Dubcovsky, J. (2004). The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303, 1640-1644.

葉雨欣,「蝴蝶蘭開花相關基因PaCOL2啟動子之特性分析」,國立中央大學,碩士論文,民國101年。
指導教授 葉靖輝(Ching-hui Yeh) 審核日期 2014-10-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明