摘要(英) |
This study presents an optimal design process for the base in medium-to-large-size turn-mill machining centers. Such a computer-aided design process can be applied at the initial stage in development of a new turn-mill machining center. In this proposed design process, a Taguchi method is employed in combination with a finite element analysis (FEA) technique. The Taguchi method is applied to determining the quality characteristic of the product, the control factors, and the control factor levels for a turn-mill machining center. The FEA technique is applied to calculating the stress and deformation of the developing turn-mill center under various combinations of design parameters, as planned by the Taguchi method.
According to the “Smaller-the-Better” quality characteristic in the Taguchi method, the minimum deformation of the base in the vertical direction (Y axis) is selected to be the objective function to be optimized. Analysis results indicate the optimal combination of the control factors is determined to be a rib spacing of 365 mm, a rib thickness of 25 mm, a spindle fixture width of 70 mm, and 12 bottom supports. Compared to the original design, the optimized design can reduce the Y-axis deformation about 16.49% and 18% on the upper guide-way, about 16.59% and 58.62% on the front guide-way, and about 55.33% in the main spindle fixture. The weight of the base in the optimal design slightly increases by 756.84 kg, which is about 11.52% of the original one. |
參考文獻 |
參考文獻
1. 黃筱婷, “2013全球工具機產銷報告,” 工具機與零組件雜誌, No. 59, pp. 50-55, 2014.
2. 張甘棠, 機工學, 三文出版社, 台北, 1990.
3. 瀧澤鐵公所網站, 取自http://www.takisawa.co.jp/products/PR13J/index-02.htm, July 30, 2014.
4. 程泰機械股份有限公司網站, 取自http://www.goodwaycnc.com/exhtml_goodway/goodway_tw/turning/horizontal/gtx/, July 30, 2014.
5. 大隈株式會社網站, 取自
http://www.okuma.co.jp/english/product/new/lt3000ex/index.html, August 6, 2014.
6. 中村留精密工業株式會社網站, 取自
http://www.nakamura-tome.co.jp/products/turret/multi-turret/wts-150.html, August 6, 2014.
7. 中村留精密工業株式會社網站, 取自
http://www.nakamura-tome.co.jp/products/atc/super-ntmx.html, August 6, 2014.
8. 中村留精密工業株式會社網站, 取自
http://www.nakamura-tome.co.jp/ch/products/atc/super-ntx.html, August 8, 2014.
9. 吉輔企業有限公司網站, 取自
http://www.atcgifu.com/htm/product-h3.htm, August 6, 2014.
10. M. Mori, H. Mizuguchi, M. Fujishima, Y. Ido, N. Mingkai, and K. Konishi, “Design Optimization and Development of CNC Lathe Headstock to Minimize Thermal Deformation,” Manufacturing Technology, Vol. 58, pp. 331-334, 2009.
11. 陳世杰, “門型加工中心機結構最佳化,” 逢甲大學材料與製造工程研究所碩士論文, 2003.
12. 柯仁凱, “工具機單元結構中補強肋之最佳化設計,” 中興大學機械工程研究所碩士論文, 2003.
13. 蘇金發, “立式綜合加工機主軸進給滑台之線性滑軌位置最佳化設計之研究,” 高雄應用科技大學機械與自動化工程系碩士論文, 2007.
14. 傅豐椲, “以交叉肋設計提升龍門加工中心機剛性結構,” 高雄應用科技大學模具工程系碩士論文, 2011.
15. 尤伯仁, “以六角形蜂巢肋設計改善方形肋之龍門加工中心剛性結構,” 高雄應用科技大學模具工程系碩士論文, 2011.
16. 鄭崇義編著, 田口品質工程技術理論與實務, 中華民國品質學會發行, 三民書局, 台北, 2000.
17. 經濟部工業局, “CNC車床規格分析與設計實務研討會,” 自動化精密機械技術發展與推廣計畫講義, pp. 36-39, 1999.
18. “一般用途平行車床準確度測試,” JIS B6202:1999, 日本規格協會, 日本東京, 1999. |