摘要(英) |
Liver X receptors are important modulators of lipid metabolism and inflammatory response. Previously our laboratory had found that the three LXR agonists, such as T0901317, GW3965 and ATI-111, acted slightly differently on the expression of LXR and other related genes, such as CD11, RXRα, SREBP-1c, resistin, MCP-1, and CCL5 in human U937 monocyte and macrophage. We herein studied whether all three LXR agonists differentially affected mRNA expression of LXR and the above genes during the 4-day period of U937 monocyte differentiation to macrophage induced by phorbol 12-myristate 13-acetate (PMA). First, CD11a, b, and c, LXRβ, RXRα, MCP-1, and CCL5 genes expressed higher during the differentiation, while LXRα, SREBP-1c and resistin gene expression declined. Second, T0901317, GW3965, and ATI-111 alone stimulated the expression of LXRα, SREBP-1c mRNAs, and decreased levels of MCP-1 mRNA, and unaltered levels of CD11, LXRβ, RXRα, resistin, and CCL5 mRNAs after 2 and 4 days of treatment. In the presence of PMA, T0901317 enhanced the PMA-increased levels of CD11b, LXRβ, and CCL5 mRNAs and the PMA-decreased levels of resistin mRNA. However, it blocked the PMA-decreased levels of LXRα and SREBP-1c mRNAs and the PMA-increased levels of MCP-1 mRNA, and unaltered PMA-increased levels of CD11a, CD11c, and RXRα mRNAs. Similar effects of GW3965 and ATI-111 to T0901317 on the PMA-altered levels of LXRα, LXRβ, RXRα, SREBP-1c, resistin, MCP-1 and CCL5 mRNAs were observed, except that GW3965 enhanced the PMA-increased expression of CD11a and CD11c mRNAs and that ATI-111 enhanced the PMA-increased expression of CD11c mRNA. These data suggest that the effect of LXR agonist on gene expression during the differentiation of monocytes into macrophages varies with the types of genes and associates with the process of differentiation. Results of the study may help clarify the different magnitudes of actions of different LXR agonists on differentiation of U937 monocytes into macrophages, lipid metabolism and inflammation. |
參考文獻 |
1. Janowski BA, et al. 1996. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 383 : 728–731.
2. Delvecchio CJ and Capone JP. 2008. Protein kinase C α modulates liver X receptor α transactivation. Journal of Endocrinology. 197 : 121–130.
3. Apfel R, et al. 1994. A Novel Orphan Receptor Specific for a Subset of Thyroid Hormone-Responsive Elements and Its Interaction with the Retinoid/Thyroid Hormone Receptor Subfamily. American Society for Microbiology. 14 : 7025-7035.
4. Repa JJ and Mangelsdorf DJ. 2000. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annual reviews. 16 : 459-481.
5. Song C, et al. 1994. Ubiquitous receptor: A receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proc Natl Acad Sci U S A. 91 : 10809-10813. 6. Jakobsson T, et al. 2012. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci. 33:394-404.
7. Pascual-García M and Valledor AF. 2012. Biological roles of liver X receptors inimmune cells. Arch Immunol Ther Exp (Warsz). 60:235-249.
8. Viennois E, et al. 2011. Targeting liver X receptors in human health: deadlock or promising trail? Expert Opin Ther Targets. 15 : 219-32.
9. Lehmann JM, et al. 1997. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem. 272 : 3137-3140.
10. Ruan B, et al. 1998. An alternative synthesis of 4, 4-dimethyl-5α-cholesta-8, 14, 24-trien-3β-ol, an intermediate in sterol biosynthesis and a reported activator of meiosis and of nuclear orphan receptor LXRα. Bioorg Med Chem Lett. 8 : 233-236.
11. Yang C, et al. 2006. Sterol Intermediates from Cholesterol Biosynthetic Pathway as Liver X Receptor Ligands. J Biol Chem. 281 : 27816-27826.
12. Song C, and Liao S. 2000. Cholestenoic Acid Is a Naturally Occurring Ligand for Liver X Receptor α. Endocrinology. 141 : 4180-4184.
13. Schultz JR, et al. 2000. Role of LXRs in control of lipogenesis. Genes Dev. 14 : 2831–2838.
14. Collins JL, et al. 2002. Identification of a Nonsteroidal Liver X Receptor Agonist through Parallel Array Synthesis of Tertiary Amines. J. Med. Chem. 45 : 1963-1966.
15. Joseph SB, et al. 2002. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 99:7604-7609.
16. Peng D, et al. 2011. A novel potent synthetic steroidal liver X receptor agonist lowers plasma cholesterol and triglycerides and reduces atherosclerosis in LDLR(-/-) mice. Br J
29
Pharmacol. 162 : 1792-804.
17. Laffitte BA, et al. 2001. Autoregulation of the human liver X receptor alpha promoter. Mol Cell Biol. 21 : 7558-68.
18. Zhang Y, et al. 2012. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice. J Clin Invest. 122 : 1688-99.
19. Calkin AC and Tontonoz P. 2010. Liver x receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol. 30 : 1513–1518.
20. Edmondson AC, et al. 2011. Dense genotyping of candidate gene loci identifies variants associated with high-density lipoprotein cholesterol. Circ Cardiovasc Genet. 4 : 145–155.
21. Teslovich TM, et al. 2010. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 466 : 707–713.
22. Repa JJ, et al. 2002. Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors alpha and beta. J Biol Chem. 277 : 18793–18800.
23. Yu L, et al. 2003 .Stimulation of cholesterol excretion by the liver X receptor agonist requires ATP-binding cassette transporters G5 and G8. J Biol Chem. 278 : 15565–15570.
24. Berge KE, et al. 2000. Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science. 290 : 1771–1775. 25. Joseph SB and Tontonoz P. 2003. LXRs: new therapeutic targets in atherosclerosis? Curr Opin Pharmacol. 3:192-7.
26. Bischoff ED, et al. 2010. Non-redundant roles for LXRalpha and LXRbeta in atherosclerosis susceptibility in low density lipoprotein receptor knockout mice. J Lipid Res. 51 : 900–906.
27. Joseph SB, et al. 2002. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci U S A. 99 : 7604–7609.
28. Levin N, et al. 2005. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol. 25 : 135–142.
29. Terasaka N, et al. 2003. T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett 536 : 6–11.
30. Repa JJ, et al. 2000. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science. 289:1524-1529.
31. Venkateswaran A, et al. 2000. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc. Natl. Acad. Sci. U. S. A.97:12097-12102.
32. Hannelie K, et al. 2009. Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J Clin Invest.119(6):1626–1637.
33. Zelcer N. and Tontonoz P. 2006. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 116 : 607-14.
34. Joseph SB, et al. 2003. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med. 9 : 213–219.
30
35. Joseph SB, et al. 2004. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell. 119 : 299–309.
36. Lee JH, et al. 2009. Differential SUMOylation of LXRα and LXRβ Mediates Transrepression of STAT1 Inflammatory Signaling in IFN-γ-Stimulated Brain Astrocytes. Mol Cell. 35 : 806-817.
37. Yasuda T, et al. 2005. Suppression of inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 22(R)-hydroxycholesterol requires de novo protein synthesis in activated macrophages. J Steroid Biochem Mol Biol. 97 : 376–383.
38. Zelcer N. and Tontonoz P. 2006. Liver X receptors as integrators of metabolic and inflammatory signaling. J Clin Invest. 116 : 607–614. 39. Valledor AF, et al. 2004. Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc. Natl. Acad. Sci. U. S. A. 101:17813-17818. 40. Fontaine C, et al. 2007. Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages. Circ Res. 101:40-49. 41. Pehkonen P, et al. 2012. Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics. 13:1-20. 42. Huang SX. 2014. Liver X receptor (LXR) agonists affect the expression of LXR and downstream genes in U937 monocyte and marcrophage. Unpublished master dissertation, National Center University, Taiwan. 43. Kürzinger K, et al. 1981. A novel lymphocyte function-associated antigen (LFA-1): cellular distribution, quantitative expression, and structure. J Immunol. 127:596-602. 44. Dustin ML, et al. 1989. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature. 341:619–624. 45. Kano Y, et al. 2013. Suppression of LFA-1 expression by spermine is associated with enhanced methylation of ITGAL, the LFA-1 promoter area. PLoS One. 8:e56056. 46. Dai Y, et al. 2003. An intact NF-kappaB pathway is required for histone deacetylase inhibitor-induced G1 arrest and maturation in U937 human myeloid leukemia cells. Cell Cycle. 2:467-72. 47. Stewart M, et al. 1996. Leukocyte integrins. Cell Biol. 7 : 690–6.
48. Raccosta L, et al. 2013. The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. J Exp Med. 210:1711-28. 49. Gao M, et al. 2013. Concurrent activation of liver X receptor and peroxisome proliferator-activated receptor alpha exacerbates hepatic steatosis in high fat diet-induced obese mice. PLoS One. 8:e65641. 50. Repa JJ, et al. 2007. Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci. 27:14470-80. 51. Yokoyama C, et al. 1993. SREBP-1,basic-helix-loop-helix-leucine zipper protein
31
that controls transcription of the low density lipoproteinreceptor gene. Cell. 75:187-197. 52. Repa JJ, et al. 2000. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14:2819-30. 53. Steppan CM, et al. 2001. The hormone resistin links obesity to diabetes. Nature. 409:307-312. 54. Singh AK, et al. 2010. Transcription of human resistin gene involves an interaction of Sp1 with peroxisome proliferator-activating receptor gamma (PPARgamma). PLoS One. 5:e9912. 55. Carr MW, et al. 1994. Monocyte chemoattractant rotein acts as T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A. 91:3652-3656. 56. Xia M, et al. 2009. Recent developments in CCR2 antagonists. Expert Opin Ther Pat. 19:295-303. 57. Zhang-Gandhi CX and Drew PD. 2007. Liver X receptor and retinoid X receptor agonists inhibit inflammatory responses of microglia and astrocytes. J Neuroimmunol.183:50-9.
58. Rot A, et al. 1992. RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med. 176:1489-95.
59. Alam R, et al. 1992. Interleukin-8 and RANTES inhibit basophil histamine release induced with monocyte chemotactic and activating factor/monocyte chemoattractant peptide-1 and histamine releasing factor. Am J Respir Cell Mol Biol. 7:427-33. 60. Higham A, et al. 2013. The role of the liver X receptor in chronic obstructive pulmonary disease. Respir Res. 14:106. 61. Oberg F, et al. 1993. Functional antagonism between vitamin D3 and retinoic acid in the regulation of CD14 and CD23 expression during monocytic differentiation of U-937 cells. J Immunol. 150:3487-95. 62. Chen YH, et al. 2006. 17β-estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor, extracellulary regulated kinase, and CCAAT/enhancer binding protein-α pathways. Endocrinology. 147:4496-4504. 63. Lee MJ, et al. 2008. Octylphenol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor and extracellular signal-regulated kinase pathways. Am J Physiol Cell Physiol. 294:C1542-51. 64. Kunnari AM, et al. 2009. The expression of human resistin in different leucocyte lineages is modulated by LPS and TNFalpha. Regul Pept. 157:57-63. 65. García A, et al. 1999. Differential effect on U937 cell differentiation by targeting transcriptional factors implicated in tissue- or stage-specific induced integrin expression. Exp Hematol. 27:353-64.
32
66. Deszo EL, et al. 2001. CD45 negatively regulates monocytic cell differentiation by inhibiting phorbol 12-myristate 13-acetate-dependent activation and tyrosine phosphorylation of protein kinase Cdelta. J Biol Chem. 276:10212-7. 67. Yamaguchi K, et al. 1994. The regulation of HIV by retinoic acid correlates with cellular expression of the retinoic acid receptors. AIDS. 8:1675-82 68. Seo JB, et al. 2003. Functional characterization of the human resistin promoter with adipocyte determination- and differentiation-dependent factor 1/sterol regulatory element binding protein 1c and CCAAT enhancer binding protein-alpha. Mol Endocrinol. 17:1522-33. 69. Hartman HB, et al. 2002. Mechanisms regulating adipocyte expression of resistin. J Biol Chem. 277:19754-61. 70. Génin P, et al. 1999. Differential regulation of CC chemokine gene expression in human immunodeficiency virus-infected myeloid cells. Virology. 261:205-15. 71. Nadesalingam J, et al. 2005. Mannose-binding lectin recognizes peptidoglycan via the N-acetyl glucosamine moiety, and inhibits ligand-induced proinflammatory effect and promotes chemokine production by macrophages. J Immunol. 175:1785-94.
72. Moriuchi H, et al. 1997. Nuclear factor-kappa B potently up-regulates the promoter activity of RANTES, a chemokine that blocks HIV infection. J mmunol. 158:3483-91. 73. Thommesen L, et al. 2006. Expression and regulation of resistin in osteoblasts and osteoclasts indicate a role in bone metabolism. J Cell Biochem. 99:824-34. 74. Cheng B, et al. 2005. Mechanisms of increased expression of toll-like receptor-4 in human monocyte/macrophage-derived foam cells. J Huazhong Univ Sci Technolog Med Sci. 25:477-9. |