博碩士論文 952204015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.135.190.135
姓名 劉奇偉(Chi-wei Liu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 抗胰島素激素的調節與作用之探討
(Studies on the regulation and action of resistin hormone)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 脂肪細胞現今已知可以表達及分泌許多種具有生物活性的胜肽,這些生物活性的胜肽在內分泌水平下可調控糖尿病、肥胖、癌症以及其它生物醫學相關的疾病。抗胰島素激素是富含半胱氨酸的賀爾蒙,最早自囓齒類動物脂肪組織分離並且發現它會連接肥胖和第二型糖尿病的發生。本文的總體目標是探討抗胰島素激素的調節與作用機制。第一章研究中,我們發現FOXO1轉錄因子可藉由直接結合抗胰島素激素啟動子進而刺激脂肪細胞抗胰島素激素基因的表達。第二章結果指出在3T3-L1脂肪細胞中,環境雌激素(例如辛基苯酚,壬基苯酚,雙酚A)對抗胰島素激素基因表達有不同的影響。在動物實驗中顯示,辛基苯酚會增加在附睾附近脂肪組織中抗胰島素激素基因表達,並且會增加血液中抗胰島素激素和血糖的含量。我們發現在動物實驗中支持體外細胞實驗的結果。此外,此章節也證實在3T3-L1脂肪細胞中處理各自的雌激素受體α和β的活化劑(例如propylpyrazoletriol和diarylpropionitrile),發現雌激素受體α和β的活化劑會隨著劑量和時間刺激抗胰島素激素基因表達。第三章研究中指出在PC-3攝護腺癌細胞中抗胰島素激素會刺激抑制細胞激素訊號(SOCS)的基因表現,特別會刺激SOCS-1、-2、-3、-4、-5、-6基因的表達但不會影響SOCS-7和CIS-1基因的表現。抗胰島素激素透過toll-like受體4(TLR4)、細胞外信號調節激酶、p38促分裂原活化蛋白激酶、C-Jun N-末端激酶和Janus激酶2,但不透過TLR2刺激SOCS基因的表現。正如先前研究發現抗胰島素激素、FOXO1轉錄因子和SOCS皆可功能性調節糖尿病、肥胖和癌症,本研究的結果有助於解釋抗胰島素激素調節這些生物醫學疾病、環境雌激素影響代謝和生殖障礙所透過的機制。 
摘要(英) Adipocytes are now known to express and secrete a variety of bioactive peptides that regulate diabetes, obesity, cancer, and other biomedical diseases at the endocrine levels. Resistin is a cysteine-rich hormone that was first isolated from adipose tissues and found to link obesity to Type 2 diabetes in rodents. The overall objective of this dissertation was thus to examine the regulation and actions of resistin. The first chapter shows that the forkhead transcription factor FOXO1 stimulates the expression of the adipocyte resistin gene via the direct binding of resistin promoter. The second chapter shows that environmental estrogens, such as octylphenol, nonylphenol and bisphenol A, had different effects on resistin gene expression in 3T3-L1 adipocytes. In vivo experiments showed that octylphenol increased resistin expression in epididymal adipose tissue and serum levels of resistin and glucose supports its in vitro effect. Furthermore, this chapter demonstrated that the agonist of the respective estrogen receptor alpha and beta, such as propylpyrazoletriol and diarylpropionitrile, dose- and time-dependently stimulated resistin gene expression in 3T3-L1 adipocytes. The third chapter shows that resistin stimulated the expression of suppressor of cytokine signaling (SOCS) genes, particularly SOCS-1, -2, -3, -4, -5, and -6 but not SOCS-7 and CIS-1 genes, in human PC-3 prostate cancer cell via the toll-like receptor 4 (TLR4), extracellular signal-regulated kinase, phosphatidylinositol 3-kinase, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and Janus kinase 2 but not TLR2 pathways. As resistin, FOXO1, and SOCS all function to regulate diabetes, obesity, and cancer, the results of this study may help explain the mechanism through which resistin modulates the processes of these biomedical diseases and environmental hormone-mediated metabolic and reproductive disorders. 
關鍵字(中) ★ 抗胰島素激素
★ 辛基苯酚
★ FOXO1轉錄因子
★ 細胞激素抑制者
關鍵字(英) ★ resistin
★ octylphenol
★ FOXO1 transcription factor
★ suppressor of cytokine signaling
論文目次 Chinese Abstract ....................... i
English Abstract ....................... ii
Declaration ....................... iii
Acknowledgment ....................... iv
Table of Contents ....................... v
List of Tables ....................... ix
List of Figures ....................... x
Abbreviation ....................... xiii

1. Chapter One Forkhead transcription factor FOXO1 regulates activity of resistin gene promoter............1
1-1. Introduction....................................3
1-2. Materials and Methods...........................5
1-2.1. Chemical reagents...............................5
1.2.2. Cell culture....................................5
1-2.3. Plasmid constructions...........................6
1-2.4. Transient transfection and luciferase reporter
assay...........................................7
1-2.5. Confocal laser scanning microscopy..............8
1-2.6. Chromatin immunoprecipitation (ChIP) assay......8
1-2.7. RNA amalysis....................................9
1-2.8. Western blot analysis...........................11
1-2.9. Statistical analysis............................12
1-3. Results and Discussion..........................13
1-3.1. FOXO1 factor activated the resistin gene
promoter........................................13
1-3.2. FoxO1 and resistin expressed high mRNA levels
during differentiation of fat cells.............15
1-3.3. Dominant-negative FoxO1 reduced resistin mRNA
expression and promoter activity................16
1-3.4. FoxO1 bound the resistin gene promoter..........16
1-4. Conclusions.....................................19
1-5. References......................................20

2. Chapter Two Environmental estrogens and estrogen receptor activators modulate resistin hormone...........26
2-1. Introduction....................................28
2-2. Materials and Methods...........................31
2-2.1. Chemical reagents...............................31
2.2.2. Cell culture....................................31
2-2.3. In vivo experiments.............................31
2-2.4. Real-time PCR...................................32
2-2.5. Statistical analysis............................33
2-3. Results and Discussion..........................34
2-3.1. Environmental estrogens affect the expression of adipocyte resistin..............................34
2-3.2. Environmental estrogens affect the expression of adipocyte leptin and adiponectin genes..........34
2-3.3. Octylphenol affects tissue and serum levels of
resistin, adiponectin, and leptin in vivo.......36
2-3.4. The octylphenol-stimulated expression of the
resistin gene in vivo is associated with glucose
homeostasis.....................................38
2-3.5. Estrogen receptor activators affect the expression
of adipocyte resistin, adiponectin, and leptin
gene............................................39
2-4. Conclusions.....................................44
2-5. References......................................45

3. Chapter Three Resistin hormone stimulates the expression of suppressors of cytokine suppressors of cytokine signaling (SOCSs) genes through the toll-like receptor 4 pathway.................................................52
3-1. Introduction....................................54
3-2. Materials and Methods...........................57
3-2.1. Chemical reagents...............................57
3.2.2. Cell culture and treatment......................57
3-2.3. Cell proliferation assay........................57
3-2.4. RT-PCR and Real-time PCR........................58
3-2.5. Statistical analysis............................59
3-3. Results and Discussion..........................60
3-3.1. Resistin stimulated expression of SOCSs genes...60
3-3.2. The effect of resistin on SOCSs mRNA expression
may requires new mRNA synthesis or alters mRNA
stability.......................................60
3-3.3. Resistin affects SOCSs mRNA expression via the
TLR4 pathway....................................61
3-3.4. ERK MEK, JNK MAPK, p38 MAPK, PI3K, and JAK-2
are involved in the resistin-stimulated increase
of SOCSs mRNA...................................62
3-3.5. The effects of resistin on SOCSs mRNA expression
are cell type specific..........................63
3-3.6. Resistin stimulated growth of PC-3 prostate cancer
cells...........................................64
3-3.7. Resistin signaling molecules are involved in the
resistin-stimulated growth of PC-3 prostate cancer
cells...........................................64
3-4. Conclusions.....................................66
3-5. References......................................67

Tables 1-5.............................................77
Fiqures 1-27............................................82
Appendix 1. The respective dissociation curves for adiponectin, resistin, FoxO1, aP2, and GAPDH indicated the specificity of real-time PCR anslysis...................121
Appendix 2. The parallelism of titration curves for adiponectin, resistin, FoxO1, aP2, and GAPDH indicated the respective efficiency of their real-time PCR anslysis...122
Appendix 3. The respective end-point RT-PCR analysis for adiponectin, resistin, FoxO1, aP2, and GAPDH indicated
the specificity and exponential change..................123
Appendix 4. The control for amplification of genomic DNA was that an equivalent amount of total RNA was not performedwith a reaction of reverse transcription but amplified in the PCR reaction of adiponectin, resistin, FoxO1, aP2, and GAPDH...................................124
Appendix 5. The different FoxO1 mutants affected activity of resistin gene promoter...............................125
Appendix 6. Using RT-PCR and real-time PCR to investigate the expression of FoxO3, FoxO4, and FoxO6 genes during
differentiation of C3H10T1/2 and 3T3-L1 preadipocytes
to adipocytes...........................................126
Appendix 7. Chromatin immunoprecipitation analysis indicated the association of FoxO1 transcription factor with resistin promoter in C3H10T1/2 and Day 2 differentiating adipocytes..............................128
Appendix 8. The differences in structures of the SOCS family members. (KIR, kinase inhibitory region; SH2 domain, Src homology 2 domain)..................................129
Appendix 9. A respective dissociation curve for SOCS-1, SOCS-2, SOCS-3, SOCS-4, SOCS-5, SOCS-6, SOCS-7, CIS-1,
and GAPDH indicates the specificity of real-time PCR
anslysis................................................130
Appendix 10. A parallelism of titration curves for SOCS-1, SOCS-2, SOCS-3, SOCS-4, SOCS-5, SOCS-6, SOCS-7, CIS-1,
and GAPDH indicates the respective efficiency of their
real-time PCR anslysis..................................131
Appendix 11. The control for amplification of genomic DNA was that an equivalent amount of total RNA was not performedwith a reaction of reverse transcription but amplified in the PCR reaction of SOCS-1, SOCS-2, SOCS-3, SOCS-4, SOCS-5, SOCS-6, SOCS-7, CIS-1, and GAPDH gene...132
Appendix 12. The effect of different inhibitors on cell viability of PC-3 prostate cancer cells after 2.5 and 24 h of treatments...........................................133
Appendix 13. The control for amplification of genomic DNA for the PCR reaction of resistin and GAPDH genes........134
Appendix 14. The control for amplification of genomic DNADNA for the PCR reaction of Resistin and GAPDH genes
in the presence and absence of ET-1.....................135
Appendix 15. SOCS family genes expressed in PC-3 and LNCaP-FGC prostate cancer cells, and U-937 leukemia cells.....138
參考文獻 Chapter 1
1. Steppan C.M., Bailey S.T., Bhat S., Brown E.J., Banerjee R.R., Wright C.M., Patel H.R., Ahima R.S., Lazar M.A., 2001. The hormone resistin links obesity to diabetes. Nature 409, 307–312.
2. Kim K.H., Zhao L., Moon Y., Kang C., Sul H.S., 2004. Dominant inhibitory adipocyte-specific secretory factor (ADSF)/resistin enhances adipogenesis and improves insulin sensitivity. Proc. Natl. Acad. Sci. U.S.A. 101, 6780–6785.
3. Mcternan P.G., Mcternan C.L., Chetty R., Jenner K., Fisher F.M., Lauer M.N., Crocker J., Barnett A.H., Kumar S., 2002. Increased resistin gene and protein expression in human abdominal adipose tissue. J. Clin. Endocrinol. Metab. 87, 2407–2410.
4. Engert J.C., Vohl M.C., Williams S.M., Lepage P., Loredo-Osti J.C., Faith J., Dore C., Renaud Y., Burtt N.P., Villeneuve A., Hirschhorn J.N., Altshuler D., Groop L.C., Despres J.P., Gaudet D., Hudson T.J., 2002. 5’Flanking variants of resistin are associated with obesity. Diabetes 51, 1629–2002.
5. Pizzuti A., Argiolas A., Paola R.D., Baratta R., Rausea A., Bozzali M., Vigneri R., Dallapiccola B., Trischitta V., Frittitta L., 2002. An ATG repeat in the 30 untranslated region of the human resistin gene is associated with a decreased risk of insulin resistance. J. Clin. Endocrinol. Metab. 87, 4403–4406.
6. Koerner A., Kratzsch J., Kiess W., 2005. Adipocytokines: leptin-the classical, resistin-the controversical, adiponectin-the promising, and more to come. Best Pract. Res. Clin. Endocrinol. Metab. 19, 525–546.
7. Arco A.D., Peralta S., Carrascosa J.M., Ros M., Andres A., Arribas C., 2003. Alternative splicing generates a novel non-secretable resistin isoform in Wistar rats. FEBS Lett. 555, 243–249.
8. Nohira T., Nagao K., Kameyama K., Nakai H., Fukumine N., Okabe K., Kitano S., Hisatomi H., 2004. Identification of an alternative splicing transcript for the resistin gene and distribution of its mRNA in human tissue. Eur. J. Endocrinol. 151, 151–154.
9. Patel S.D., Rajala M.W., Rossetti L., Scherer P.E., Shapiro L., 2004. Disulfide-dependent multimeric assembly of resistin family hormones, Science 304, 1154-1158.
10. Banerjee R.R., Lazar M.A., 2003. Resistin: molecular history and prognosis. J. Mol. Med. 81, 218–226.
11. Banerjee R.R., Rangwala S.M., Shapiro J.S., Rich A.S., Rhoades B., Qi Y., Wang J., Rajala M.W., Pocai A., Scherer P.E., Steppan C.M., Ahima R.S., Obici S., Rossetti L., Lazar M.A., 2004. Regulation of fasted blood glucose by resistin. Science 303, 1195–1198.
12. Calabro P., Samudio I., Willerson J.T., Yeh E.T., 2004. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 110, 3335–3340.
13. Moon B., Kwan J.J., Duddy N., Sweeney G., Begum N., 2003. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am. J. Physiol. Endocrinol. Metab. 285, E106–E115.
14. Muse E.D., Obici S., Bhanot S., Monia B.P., McKay R.A., Rajala M.W., Scherer P.E., Rossetti L., 2004. Role of resistin in diet-induced hepatic insulin resistance. J. Clin. Invest. 114, 232–239.
15. Ort T., Arjona A.A., MacDougall J.R., Nelson P.J., Rothenberg M.E., Wu F., Eisen A., Halvorsen Y.D.C., 2005. Recombinant human FIZZ3/resistin stimulates lipolysis in cultured human adipocytes, mouse adipose explants, and normal mice. Endocrinology 146, 2200–2209.
16. Steppan C.M., Wang J., Whiteman E.L., Birnbaum M.J., Lazar M.A., 2005. Activation of SOCS-3 by resistin. Mol. Cell. Biol. 25, 1569–1575.
17. Chen Y.H., Lee M.J., Chang H.H., Hung P.F., Kao Y.H., 2006. 17β-Estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor, extracellularly regulated kinase, and CCAAT/enhancer binding protein-α pathways. Endocrinology 147, 4496–4504.
18. Felipe F., Bonet M.L., Ribot J., Palou A., 2004. Modulation of resistin expression by retinoic acid and vitamin A status. Diabetes 53, 882–889.
19. Hartman H.B., Hu X., Tyler K.X., Dalal C.K., Lazar M.A., 2002. Mechanisms regulating adipocyte expression of resistin. J. Biol. Chem. 277, 19754–19761.
20. Lee M.J., Lin H., Liu C.W., Wu M.H., Liao W.J., Chang H.H., Ku H.C., Chien Y.S., Ding W.H., Kao Y.H., 2008. Octylphenol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor and extracellular signal-regulated kinase pathways. Am. J. Physiol. Cell Physiol. 294, C1542–C1551.
21. Seo J.B., Noh M.J., Yoo E.J., Park S.Y., Park J., Lee I.K., Park S.D., Kim J.B., 2003. Functional characterization of the human resistin promoter with adipocyte determination-and differentiation-dependent factor 1/sterol regulatory element binding protein 1c and CCAAT enhancer binding protein-a. Mol. Endocrinol. 17, 1522–1533.
22. Shojima N., Sakoda H., Ogihara T., Fujishiro M., Katagiri H., Anai M., Onishi Y., Ono H., Inukai K., Abe M., Fukushima Y., Kikuchi M., Oka Y., Asano T., 2002. Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells. Diabetes 51, 1737–1744.
23. Song H., Shojima N., Sakoda H., Ogihara T., Fujishiro M., Katagiri H., Anai M., Onishi Y., Ono H., Inukai K., Fukushima Y., Kikuchi M., Shimano H., Yamada N., Oka Y., Asano T., 2002. Resistin is regulated by C/EBPs, PPARs, and signal-transducing molecules. Biochem. Biophys. Res. Commun. 299, 291–298.
24. Nakae J., Kitamura T., Kitamure Y., Biggs III W.H., Arden K.C., Accili D., 2003. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev. Cell 4, 119–129.
25. Nakae J., Barr V., Accili D., 2000. Differential regulation of gene expression by insulin and IGF-1 receptors correlates with phosphorylation of a single amino acid residues in the forkhead transcription factor FKHR. EMBO J. 19, 989–996.
26. Nakae J., Oki M., Cao Y., 2008. The FoxO transcription factors and metabolic regulation. FEBS Lett. 582, 54–67.
27. Obsil T., Obsilova V., 2008. Structure/function relationships underlying regulation of FOXO transcription factors. Oncogene 27, 2263–2275.
28. Chen Y.H., Hung P.F., Kao Y.H., 2005. IGF-I downregulates resistin gene expression and protein secretion. Am. J. Physiol. Endocrinol. Metab. 288, E1019–E1027.
29. Kawashima J., Tsuruzoe K., Motoshima H., Shirakami A., Sakai K., Hirashima Y., Toyonaga T., Araki E., 2003. Insulin down-regulates resistin mRNA through the synthesis of protein(s) that could accelerate the degradation of resistin mRNA in 3T3-L1 adipocytes. Diabetologia 46, 231–240.
30. Hung P.F., Wu B.T., Chen H.C., Chen Y.H., Chen C.L., Wu M.H., Liu H.C., Lee M.J., Kao Y.H., 2005. Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am. J. Physiol. Cell Physiol. 288, C1094–C1108.
31. Hsieh C.F., Tsuei Y.W., Liu C.W., Kao C.C., Shih L.J., Ho L.T., Wu L.Y., Wu C.P., Tsai P.H., Chang H.H., Ku H.C., Kao Y.H., 2010. Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways. Planta Med. 76, 1694–1698.
32. Ku H.C., Chang H.H., Liu H.C., Hsiao C.H., Lee M.J., Hu Y.J., Hung P.F., Liu C.W., Kao Y.H., 2009. Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am. J. Physiol. Cell Physiol. 297, C121–C132.
33. Ku H.C., Liu H.S., Hung P.F., Chen C.L., Liu H.C., Chang H.H., Tsuei Y.W., Shih L.J., Lin C.L., Lin C.M., Kao Y.H., 2012. Green tea (-)-epigallocatechin gallate inhibits IGF-I and IGF-II stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway. Mol. Nutr. Food Res. 56, 580–592.
34. Green H., Kehinde O., 1974. Sublines of mouse 3T3 cells and accumulate lipid. Cell 1, 113–116.
35. Reznikoff C.A., Brankow D.W., Heidelberger C., 1973. Establishment and characterization of a cloned line of C3H mouse embryo cells sensitive to postconfluence inhibition of division. Cancer Res. 33, 3231–3238.
36. Tang Q.Q., Otte T.C., Lane M.D., 2004. Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc. Natl. Acad. Sci. U.S.A. 101, 9607– 9611.
37. Chang H.H., Huang Y.M., Wu C.P., Tang Y.C., Liu C.W., Huang C.H., Ho L.T., Wu L.Y., Kuo Y.C., Kao Y.H., 2012. Endothelin-1 stimulates suppressor of cytokine signaling-3 gene expression in adipocytes. Gen. Comp. Endocrinol. 178, 450–458.
38. Wang C.T., Chang H.H., Hsiao C.H., Lee M.J., Ku H.C., Hu Y.J., Kao Y.H., 2009. The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Mol. Nutr. Food Res. 53, 349–360.
39. Chang H.H., Tsai P.H., Liu C.W., Ku H.C., Kao C.C., Kao Y.H., 2013. Cycloheximide stimulates suppressor of cytokine signaling-3 gene expression in 3T3-L1 adipocytes via the extracellular signal-regulated kinase pathway. Toxicol. Lett. 217, 42–49.
40. Liu C.W., Yang S.Y., Lin C.K., Liu H.S., Ho L.T., Wu L.Y., Lee M.J., Ku H.C., Chang H.H., Huang R.N., Kao Y.H., 2014. The forkhead transcription factor FOXO1 stimulates the expression of the adipocyte resistin gene. Gen Comp Endocrinol. 196:41-51.
41. Liao W., Audrey Nguyen M.T., Imamura T., Singer O., Verma I.M., Olefsky J.M., 2006. Lentivial short hairpin ribonucleic acid-mediated knockdown of GLUT4 in 3T3-L1 adipocytes. Endocrinology 147, 2245–2252.
42. Chang J.H., Lin K.H., Shih C.H., Chang Y.J., Chi H.C., Chen S.L., 2006. Myogenic basic helix-loop-helix proteins regulate the expression of peroxisomal proliferator activated receptor-gamma coactivator-1alpha. Endocrinology 147, 3093–3106.
43. Qiao L., Shao J., 2006. SIRT1 regulates adiponectin gene expression through Foxo1-C/Enhancer-binding protein a transcriptional complex. J. Biol. Chem. 281, 39915–39924.

chapter 2
1. Kershaw E.E., Flier J.S., 2004. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548-2556.
2. Steppan C.M., Bailey S.T., Bhat S., Brown E.J., Banerjee R.R., Wright C.M., Patel H.R., Ahima R.S., Lazar M.A., 2001. The hormone resistin links obesity to diabetes. Nature 409:307-312.
3. Moon B., Kwan J.J., Duddy N., Sweeney G., Begum N., 2003. Resistin inhibits glucose uptake in L6 cells independently of changes in insulin signaling and GLUT4 translocation. Am J Physiol Endocrinol Metab 285:E106-115.
4. Kim K.H., Zhao L., Moon Y., Kang C., Sul H.S., 2004. Dominant inhibitory adipocyte-specific secretory factor (ADSF)/resistin enhances adipogenesis and improves insulin sensitivity. Proc Natl Acad Sci U S A 101:6780-6785.
5. Koerner A., Kratzsch J., Kiess W., 2005. Adipocytokines: leptin--the classical, resistin--the controversical, adiponectin--the promising, and more to come. Best Pract Res Clin Endocrinol Metab 19:525-546.
6. Engert J.C., Vohl M.C., Williams S.M., Lepage P., Loredo-Osti J.C., Faith J., Dore C., Renaud Y., Burtt N.P., Villeneuve A., Hirschhorn J.N., Altshuler D., Groop L.C., Despres J.P., Gaudet D., Hudson T.J., 2002. 5′ flanking variants of resistin are associated with obesity. Diabetes 51:1629-1634.
7. Pizzuti A., Argiolas A., Di Paola R., Baratta R., Rauseo A., Bozzali M., Vigneri R., Dallapiccola B., Trischitta V., Frittitta L., 2002. An ATG repeat in the 3′-untranslated region of the human resistin gene is associated with a decreased risk of insulin resistance. J Clin Endocrinol Metab 87:4403-4406.
8. Degawa-Yamauchi M., Bovenkerk J.E., Juliar B.E., Watson W., Kerr K., Jones R., Zhu Q., Considine R.V., 2003. Serum resistin (FIZZ3) protein is increased in obese humans. J Clin Endocrinol Metab 88:5452-5455.
9. Youn B.S., Yu K.Y., Park H.J., Lee N.S., Min S.S., Youn M.Y., Cho Y.M., Park Y.J., Kim S.Y., Lee H.K., Park K.S., 2004. Plasma resistin concentrations measured by enzyme-linked immunosorbent assay using a newly developed monoclonal antibody are elevated in individuals with type 2 diabetes mellitus. J Clin Endocrinol Metab 89:150-156.
10. McTernan P.G., McTernan C.L., Chetty R., Jenner K., Fisher F.M., Lauer M.N., Crocker J., Barnett A.H., Kumar S., 2002. Increased resistin gene and protein expression in human abdominal adipose tissue. J Clin Endocrinol Metab 87:2407-2410.
11. Arco A.D., Peralta S., Carrascosa J.M., Ros M., Andres A., Arribas C., 2003. Alternative splicing generates a novel non-secretable resistin isoform in Wistar rats. FEBS Lett 555:243-249.
12. Nohira T., Nagao K., Kameyama K., Nakai H., Fukumine N., Okabe K., Kitano S., Hisatomi H., 2004. Identification of an alternative splicing transcript for the resistin gene and distribution of its mRNA in human tissue. Eur J Endocrinol 151:151-154.
13. Patel S.D., Rajala M.W., Rossetti L., Scherer P.E., Shapiro L., 2004. Disulfide-dependent multimeric assembly of resistin family hormones. Science 304:1154-1158.
14. Banerjee R.R., Rangwala S.M., Shapiro J.S., Rich A.S., Rhoades B., Qi Y., Wang J., Rajala M.W., Pocai A., Scherer P.E., Steppan C.M., Ahima R.S., Obici S., Rossetti L., Lazar M.A., 2004. Regulation of fasted blood glucose by resistin. Science 303:1195-1198.
15. Dick G.M., Katz P.S., Farias M., Morris M., James J., Knudson J.D., Tune JD., 2006. Resistin impairs endothelium-dependent dilation to bradykinin, but not acetylcholine, in the coronary circulation. Am J Physiol Heart Circ Physiol 291:H2997-3002.
16. Jung H.S., Park K.H., Cho Y.M., Chung S.S., Cho H.J., Cho S.Y., Kim S.J., Kim S.Y., Lee H.K., Park K.S., 2006. Resistin is secreted from macrophages in atheromas and promotes atherosclerosis. Cardiovasc Res 69:76-85.
17. Muse E.D., Obici S., Bhanot S., Monia B.P., McKay R.A., Rajala M.W., Scherer P.E., Rossetti L., 2004. Role of resistin in diet-induced hepatic insulin resistance. J Clin Invest 114:232-239.
18. Ort T., Arjona A.A., MacDougall J.R., Nelson P.J., Rothenberg M.E., Wu F., Eisen A., Halvorsen Y.D., 2005. Recombinant human FIZZ3/resistin stimulates lipolysis in cultured human adipocytes, mouse adipose explants, and normal mice. Endocrinology 146:2200-2209.
19. Calabro P., Samudio I., Willerson J.T., Yeh E.T., 2004. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase 1/2 and phosphatidylinositol 3-kinase pathways. Circulation 110:3335-3340.
20. Steppan C.M., Wang J., Whiteman E.L., Birnbaum M.J., Lazar M.A., 2005. Activation of SOCS-3 by resistin. Mol Cell Biol 25:1569-1575.
21. Banerjee R.R., Lazar M.A., 2003. Resistin: molecular history and prognosis. J Mol Med (Berl) 81:218-226.
22. Shojima N., Sakoda H., Ogihara T., Fujishiro M., Katagiri H., Anai M., Onishi Y., Ono H., Inukai K., Abe M., Fukushima Y., Kikuchi M., Oka Y., Asano T., 2002. Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells. Diabetes 51:1737-1744.
23. Chen Y.H., Lee M.J., Chang H.H., Hung P.F., Kao Y.H., 2006. 17 beta-estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor, extracellularly regulated kinase, and CCAAT/enhancer binding protein-alpha pathways. Endocrinology 147:4496-4504.
24. Sun J., Huang Y.R., Harrington W.R., Sheng S., Katzenellenbogen J.A., Katzenellenbogen B.S., 2002. Antagonists selective for estrogen receptor alpha. Endocrinology 143:941-947.
25. Klinge C.M., 2001. Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905-2919.
26. White E., Jobling S., Hoare S.A., Sumpter J.P., Parker M.G., 1994. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175-182.
27. Masuno H., Iwanami J., Kidani T., Sakayama K., Honda K., 2005. Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci 84:319-327.
28. Masuno H., Okamoto S., Iwanami J., Honda K., Shiosaka T., Kidani T., Sakayama K., Yamamoto H., 2003. Effect of 4-nonylphenol on cell proliferation and adipocyte formation in cultures of fully differentiated 3T3-L1 cells. Toxicol Sci 75:314-320.
29. Nilsson S., Makela S., Treuter E., Tujague M., Thomsen J., Andersson G., Enmark E., Pettersson K., Warner M., Gustafsson J.A., 2001. Mechanisms of estrogen action. Physiol Rev 81:1535-1565.
30. Santos E.G.D., Dieudonne M.N., Pecquery R., Moal V.L., Giudicelli Y., Lacasa D., 2002. Rapid nongenomic E2 effects on p42/p44 MAPK, activator protein-1, and cAMP response element binding protein in rat white adipocytes. Endocrinology 143:930-940.
31. Laws S.C., Carey S.A., Ferrell J.M., Bodman G.J., Cooper R.L., 2000. Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol Sci 54:154-167.
32. Pfaffl M.W., 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45.
33. Bulayeva N.N., Watson C.S., 2004. Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways. Environ Health Perspect 112: 1481–1487.
34. Cooke P.S., Naaz A., 2004. Role of estrogens in adipocyte development and function. Exp Biol Med 229: 1127–1135.
35. Gui Y., Silha .JV., Murphy L.J., Sexual dimorphism and regulation of resistin, adiponectin, and leptin expression in the mouse. Obes Res 12: 1481–1491.
36. Meier U., Gressner A.M., 2004. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 50: 1511–1525.
37. Certa H., Fedtke N., Wiegand H.J., Muller A.M.F., Bolt H.M., 1996. Toxicokinetics of p-tert-octylphenol in male Wistar rats. Arch Toxicol 71: 112–122.
38. Berg A.H., Combs T.P., Du X., Brownlee M., Scherer P.E., 2001. The adipocytesecreted protein Acrp30 enhances hepatic insulin action. Nat Med 7:947–953.
39. Fu Y., Luo N., Klein R.L., Garvey W.T., 2005. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res 46:1369–1379.
40. Ranganathan S., Ciaraldi T.P., Henry R.R., Mudaliar S., Kern P.A., 1998. Lack of effect of leptin on glucose transport, lipoprotein lipase, and insulin action in adipose and muscle cells. Endocrinology 139: 2509–2513. Simoncini T., Mannella P., Fornari L., Caruso A., Varone G., Genazzani A.R., 2004. Genomic and non-genomic effects of estrogens on endothelial cells. Steroids 69(8-9):537-42.
41. Wessler S., Otto C., Wilck N., Stangl V., Fritzemeier K.H., 2005. Identification of estrogen receptor ligands leading to activation of non-genomic signaling pathways while exhibiting only weak transcriptional activity. J Steroid Biochem Mol Bio 98(1):25-35.
42. Pedram A., Razandi M., Aitkenhead M., Hughes C.C., Levin E.R., 2002. Integration of the non-genomic and genomic actions of estrogen. Membrane-initiated signaling by steroid to transcription and cell biology. J Biol Chem 277(52):50768-75.
43. Noguchi S., Nakatsuka M., Asagiri K., Habara T., Takata M., Konishi H., Kudo T., 2002. Bisphenol A stimulates NO synthesis through a non-genomic estrogen receptor-mediated mechanism in mouse endothelial cells. Toxicol Lett 135(1-2):95-101.
44. Silva E., Kabil A., Kortenkamp A., 2010. Cross-talk between non-genomic and genomic signalling pathways--distinct effect profiles of environmental estrogens. Toxicol Appl Pharmacol 245(2):160-70.
45. Quesada I., Fuentes E., Viso-León M.C., Soria B., Ripoll C., Nadal A., 2002. Low doses of the endocrine disruptor bisphenol-A and the native hormone 17 beta-estradiol rapidly activate transcription factor CREB. FASEB 16(12):1671-3.
46. Dhandapani K.M., Wade F.M., Mahesh V.B., Brann D.W., 2005. Astrocyte-derived transforming growth factor-{beta} mediates the neuroprotective effects of 17{beta}-estradiol: involvement of nonclassical genomic signaling pathways. Endocrinology 146(6):2749-59.
47. Jaubert A.M., Mehebik-Mojaat N., Lacasa D., Sabourault D., Giudicelli Y., Ribière C., 2007. Nongenomic estrogen effects on nitric oxide synthase activity in rat adipocytes. Endocrinology 148(5):2444-52.
48. Chen Y.H., Lee M.J., Chang H.H., Hung P.F., Kao Y.H., 2006. 17 beta-estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor, extracellularly regulated kinase, and CCAAT/enhancer binding protein-alpha pathways. Endocrinology 147(9):4496-504.
49. Inoue S., Horie-Inoue K., 2004. Estrogen Receptor Function and Molecular Mechanisms. JMAJ 47(10): 480–485.
50. Paech K., Webb P., Kuiper G.G., Nilsson S., Gustafsson J., Kushner P.J., Scanlan T.S., 1997. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 277(5331):1508-10.
51. Maruyama S., Fujimoto N., Asano K., Ito A., 2001. Suppression by estrogen receptor beta of AP-1 mediated transactivation through estrogen receptor alpha. J Steroid Biochem Mol Bio 78(2):177-84.
52. Vazquez-Prieto M.A., Bettaieb A., Haj F.G., Fraga C.G., Oteiza P.I., 2012. (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Arch Biochem Biophys. 527(2):113-8.
53. Yi K.W., Shin J.H., Seo H.S., Lee J.K., Oh M.J., Kim T., Saw H.S., Kim S.H., Hur J.Y., 2008. Role of estrogen receptor-alpha and -beta in regulating leptin expression in 3T3-L1 adipocytes. Obesity 16(11):2393-9.
54. Harrington W.R., Sheng S., Barnett D.H., Petz L.N., Katzenellenbogen J.A., Katzenellenbogen B.S., 2003. Activities of estrogen receptor alpha- and beta-selective ligands at diverse estrogen responsive gene sites mediating transactivation or transrepression. Mol Cell Endocrinol 206(1-2): 13-22.

chapter 3
1. American Cancer Society. Cancer Facts & Figures 2014. Atlanta, Ga: American Cancer Society; 2014.
2. Freedland S.J., Aronson W.J., 2004. Examining the Relationship Between Obesity and Prostate Cancer. REVIEWS IN UROLOGY VOL. 6.
3. Mistry T., Digby J.E., Desai K.M., Randeva H.S., 2007. Obesity and Prostate Cancer: A Role for Adipokines. european urology 52:46–53.
4. Buschemeyer III W.C., Freedland S.J., 2007. Obesity and Prostate Cancer: Epidemiology and Clinical Implications. european urology 52:331–343.
5. Baillargeon J., Rose D.P., 2006. Obesity, adipokines, and prostate cancer (Review). INTERNATIONAL JOURNAL OF ONCOLOGY 28: 737-745.
6. Baillargeon J., Platz E.A., Rose D.P., Pollock B.H., Ankerst D.P., Haffner S., Higgins B., Lokshin A., Troyer D., Hernandez J., Lynch S., Leach R.J., Thompson I.M., 2006. Obesity, Adipokines, and Prostate Cancer in a Prospective Population-Based Study. Cancer Epidemiol Biomarkers Prev 15.
7. Albanes D., Weinstein S.J., Wright M.E., Mannisto S., Limburg P.J., Snyder K., Virtamo J., 2009. Serum Insulin, Glucose, Indices of Insulin Resistance, and Risk of Prostate Cancer. J Natl Cancer Inst 101:1272–1279.
8. Mistry T., Digby J.E., Desai K.M., Randeva H.S., 2008. Leptin and adiponectin interact in the regulation of prostate cancer cell growth via modulation of p53 and bcl-2 expression. B J U INTERNATIONAL 101:1317–1322.
9. Somasundar P., Frankenberry K.A., Skinner H., Vedula G., McFadden D.W., F.A.C.S., Riggs D., Jackson B., Vangilder R., Hileman S.M., Vona-Davis L.C., 2004. Prostate Cancer Cell Proliferation Is Influenced by Leptin. Journal of Surgical Research 118:71–82.
10. Frankenberry K.A., Somasundar P., McFadden D.W., F.A.C.S., Vona-Davis L.C., 2004. Leptin induces cell migration and the expression of growth factors in human prostate cancer cells. The American Journal of Surgery 188:560–565.
11. Moore S.C., Leitzmann M.F., Albanes D., Weinstein S.J., Snyder K., Virtamo J., Ahn J., Mayne S.T., Yu H., Peters U., Gunter M.J., 2009. Adipokine Genes and Prostate Cancer Risk. Int J Cancer. 124(4): 869–876.
12. Fontana C.M.L., Maselli M.E., Elizalde R.F.P., Mónaco N.A.D.M., Recupero A.L.U., Laur J.D.L., 2011. Leptin increases prostate cancer aggressiveness. J Physiol Biochem.
13. Samuel-Mendelsohn S., Inbar M., Weiss-Messer E., Niv-Spector L., Gertler A., Barkey R.J., 2011. Leptin Signaling and Apoptotic Effects inhuman Prostate Cancer Cell Lines. The Prostate 71:929-945.
14. Hsing A.W., Chua S., Gao Y.T., Gentzschein E., Chang L., Deng J., Stanczyk F.Z., 2001. Prostate Cancer Risk and Serum Levels of Insulin and Leptin: a Population-Based Study. J Natl Cancer Inst 93:783–9.
15. Kim H.J., Lee Y.S., Won E.H., Chang I.H., Kim T.H., Park E.S., Kim M.K., Kim W., Myung S.C., 2011. Expression of resistin in the prostate and its stimulatory effect on prostate cancer cell proliferation. BJU Int. 108(2 Pt 2):E77-83.
16. Codoñer-Franch P., Alonso-Iglesias E., 2014. Resistin: Insulin resistance to malignancy. Clin Chim Acta. 438C:46-54.
17. Calabro P., Samudio I., Willerson J.T., Yeh E.T., 2004. Resistin promotes smooth muscle cell proliferation through activation of extracellular signal-regulated kinase.
18. Banerjee R.R., Rangwala S.M., Shapiro J.S., Rich A.S., Rhoades B., Qi Y., Wang J., Rajala M.W., Pocai A., Scherer P.E., Steppan C.M., Ahima R.S., Obici S., Rossetti L., Lazar M.A., 2004. Regulation of fasted blood glucose by resistin. Science 303, 1195–1198.
19. Muse E.D., Obici S., Bhanot S., Monia B.P., McKay R.A., Rajala M.W., Scherer P.E., Rossetti L., 2004. Role of resistin in diet-induced hepatic insulin resistance. J. Clin. Invest. 114, 232–239.
20. Steppan C.M., Wang J., Whiteman E.L., Birnbaum M.J., Lazar M.A., 2005. Activation of SOCS-3 by resistin. Mol Cell Biol. 25(4):1569-75.
21. Tarkowski A., Bjersing J., Shestakov A., Bokarewa M.I., 2010. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J. Cell. Mol. Med. 14, 1419–1431.
22. Endo T.A., Masuhara M., Yokouchi M., Suzuki R., Sakamoto H., Mitsui K., Matsumoto A., Tanimura S., Ohtsubo M., Misawa H., Miyazaki T., Leonor N., Taniguchi T., Fujita T., Kanakura Y., Komiya S., Yoshimura A., 1997. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387: 921-924.
23. Pezet A., Favre H., Kelly P.A., Edery M., 1999. Inhibition and restoration of prolactin signal trans duction by suppressors of cytokine signaling. J Biol Chem 274: 24497-24502.
24. Helman D., Sandowski Y., Cohen Y., Matsumoto A., Yoshimura A., Merchav S., Gertler A., 1998. Cytokine-inducible SH2 protein (CIS3) and JAK2 binding protein (JAB) abolish prolactin receptor-mediated STAT5 signaling. FEBS Lett 441: 287-291.
25. Hansen J.A., Lindberg K., Hilton D.J., Nielsen J.H., Billestrup N., 1999. Mechanism of inhibition of growth hormone receptor signaling by suppressor of cytokine signaling proteins. Mol Endocrinol 13: 1832-1843.
26. Adams T.E., Hansen J.A., Starr R., Nicola N.A., Hilton D.J., Billestrup N., 1998. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem 273: 1285-1287.
27. Sporri B., Kovanen P.E., Sasaki A., Yoshimura A., Leonard W.J., 2001. JAB/SOCS1/SSI-1 is an interleukin-2-induced inhibitor of IL-2 signaling. Blood 97: 221-226.
28. Naka T., Narazaki M., Hirata M., Matsumoto T., Minamoto S., Aono A., Nishimoto N., Kajita T., Taga T., Yoshizaki K., Akira S., Kishimoto T., 1997. Structure and function of a new STAT-induced STAT inhibitor. Nature 387: 924-929.
29. Motta M., Accornero P., Baratta M., 2004. Leptin and prolactin modulate the expression of SOCS-1 in association with interleukin-6 and tumor necrosis factor-alpha in mammary cells: a role in differentiated secretory epithelium. Regul Pept 121: 163-170.
30. Kawazoe Y., Naka T., Fujimoto M., Kohzaki H., Morita Y., Narazaki M., Okumura K., Saitoh H., Nakagawa R., Uchiyama Y., Akira S., Kishimoto T., 2001. Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation. J Exp Med 193: 263-269.
31. Zong C.S., Chan J., Levy D.E., Horvath C., Sadowski H.B., Wang L.H., 2000. Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem 275: 15099-15105.
32. Yasukawa H., Misawa H., Sakamoto H., Masuhara M., Sasaki A., Wakioka T., Ohtsuka S., Imaizumi T., Matsuda T., Ihle J.N., Yoshimura A., 1999. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J 18: 1309-1320.
33. Nicholson S.E., Willson T.A., Farley A., Starr R., Zhang J.G., Baca M., Alexander W.S., Metcalf D., Hilton D.J., Nicola N.A., 1999. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J 18: 375-385
34. Ram P.A., Waxman D.J., 1999. SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 274: 35553-35561.
35. Harris J., Stanford P.M., Sutherland K., Oakes S.R., Naylor M.J., Robertson F.G., Blazek K.D., Kazlauskas M., Hilton H.N., Wittlin S., Alexander W.S., Lindeman G.J., Visvader J.E., Ormandy C.J., 2006. Socs2 and Elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol 20: 1177-1187.
36. Tannahill G.M., Elliott J., Barry A.C., Hibbert L., Cacalano N.A., Johnston J.A., 2005. SOCS2 can enhance interleukin-2 (IL-2) and IL-3 signaling by accelerating SOCS3 degradation. Mol Cell Biol 25: 9115-9126.
37. Goldshmit Y., Walters C.E., Scott H.J., Greenhalgh C.J., Turnley A.M., 2004. SOCS2 induces neurite outgrowth by regulation of epidermal growth factor receptor activation. J Biol Chem 279: 16349-16355.
38. Dey B.R., Spence S.L., Nissley P., Furlanetto R.W., 1998. Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J Biol Chem 273: 24095-24101.
39. Cohney S.J., Sanden D., Cacalano N.A., Yoshimura A., Mui A., Migone T.S., Johnston J.A., 1999. SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol Cell Bio 19: 4980-4988.
40. Sasaki A., Yasukawa H., Shouda T., Kitamura T., Dikic I., Yoshimura A., 2000. CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 275: 29338-29347.
41. Matsumoto A., Masuhara M., Mitsui K., Yokouchi M., Ohtsubo M., Misawa H., Miyajima A., Yoshimura A., 1997. CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89: 3148-3154.
42. Bjorbaek C., Elmquist J.K., Frantz J.D., Shoelson S.E., Flier J.S., 1998. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1: 619-625.
43. Emanuelli B., Peraldi P., Filloux C., Sawka-Verhelle D., Hilton D., Van Obberghen E., 2000. SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275: 15985-15991.
44. Babon J.J., Kershaw N.J., Murphy J.M., Varghese L.N., Laktyushin A., Young S.N., Lucet I.S., Norton R.S., Nicola N.A., 2012. Suppression of cytokine signaling by SOCS3: characterization of the mode of inhibition and the basis of its specificity. Immunity 36: 239-250.
45. Yasukawa H., Ohishi M., Mori H., Murakami M., Chinen T., Aki D., Hanada T., Takeda K., Akira S., Hoshijima M., Hirano T., Chien K.R., Yoshimura A., 2003. IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 4: 551-556.
46. Kario E., Marmor M.D., Adamsky K., Citri A., Amit I., Amariglio N., Rechavi G., Yarden Y., 2005. Suppressors of cytokine signaling 4 and 5 regulate epidermal growth factor receptor signaling. J Biol Chem 280, 7038-7048.
47. Seki Y., Hayashi K., Matsumoto A., Seki N., Tsukada J., Ransom J., Naka T., Kishimoto T., Yoshimura A., Kubo M., 2002. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci USA 99, 3003-13008.
48. Gupta S., Mishra K., Surolia A., Banerjee K., 2011. Suppressor of cytokine signalling-6 promotes neurite outgrowth via JAK2/STAT5-mediated signalling pathway, involving negative feedback inhibition. PLoS One 6, e26674.
49. Mooney R.A., Senn J., Cameron S., Inamdar N., Boivin L.M., Shang Y., Furlanetto R.W., 2001. Suppressors of cytokine signaling-1 and -6 associate with and inhibit the insulin receptor. A potential mechanism for cytokine-mediated insulin resistance. J Biol Chem 276, 25889-25893.
50. Choi Y.B., Son M., Park M., Shin J., Yun Y., 2010. SOCS-6 negatively regulates T cell activation through targeting p56lck to proteasomal degradation. J Biol Chem 285, 7271-7280.
51. Krebs D.L., Uren R.T., Metcalf D., Rakar S., Zhang J.G., Starr R., De Souza D.P., Hanzinikolas K., Eyles J., Connolly L.M., Simpson R.J., Nicola N.A., Nicholson S.E., Baca M., Hilton D.J., Alexander W.S., 2002. SOCS-6 binds to insulin receptor substrate 4, and mice lacking the SOCS-6 gene exhibit mild growth retardation. Mol Cell Biol 22, 4567-4578.
52. Martens N., Uzan G., Wery M., Hooghe R., Hooghe-Peters E.L., Gertler A., 2005. Suppressor of cytokine signaling 7 inhibits prolactin, growth hormone, and leptin signaling by interacting with STAT5 or STAT3 and attenuating their nuclear translocation. J Biol Chem 280,13817-13823.
53. Banks A.S., Li J., McKeag L., Hribal M.L., Kashiwada M., Accili D., Rothman P.B., 2005. Deletion of SOCS7 leads to enhanced insulin action and enlarged islets of Langerhans. J Clin Invest 115, 2462-2471.
54. Puhr M., Santer F.R., Neuwirt H., Susani M., Nemeth J.A., Hobisch A., Kenner L., Culig Z., 2009. Down-regulation of Suppressor of Cytokine Signaling-3 Causes Prostate Cancer Cell Death through Activation of the Extrinsic and Intrinsic Apoptosis Pathways. Cancer Res 69(18):7375–84.
55. Zhu J.G., Dai Q.S., Han Z.D., He H.C., Mo R.J., Chen G., Chen Y.F., Wu Y.D., Yang S.B., Jiang F.N., Chen W.H., Sun Z.L., Zhong W.D., 2013. Expression of SOCSs in human prostate cancer and their association in prognosis. Mol Cell Biochem. 2381(1-2):51-9.
56. Culig Z., 2013. Suppressors of cytokine signalling-3 and -1 in human carcinogenesis. Front Biosci (Schol Ed). 5:277-83.
57. Neuwirt H., Puhr M., Santer F.R., Susani M., Doppler W., Marcias G., Rauch V., Brugger M., Hobisch A., Kenner L., Culig Z., 2009. Suppressor of cytokine signaling (SOCS)-1 is expressed in human prostate cancer and exerts growth-inhibitory function through down-regulation of cyclins and cyclin-dependent kinases. Am J Pathol. 174(5):1921-30.
58. Neuwirt H., Puhr M., Cavarretta I.T., Mitterberger M., Hobisch A., Culig Z., 2007. Suppressor of cytokine signalling-3 is up-regulated by androgen in prostate cancer cell lines and inhibits androgen-mediated proliferation and secretion. Endocr Relat Cancer. 14(4):1007-19.
59. Bellezza I., Neuwirt H., Nemes C., Cavarretta I.T., Puhr M., Steiner H., Minelli A., Bartsch G., Offner F., Hobisch A., Doppler W., Culig Z., 2006. Suppressor of cytokine signaling-3 antagonizes cAMP effects on proliferation and apoptosis and is expressed in human prostate cancer. Am J Pathol. 169(6):2199-208.
60. Housa D., Vernerova Z., Heracek J., Cechak P., Rosova B., Kuncova J., Haluzik M., 2008. Serum resistin levels in benign prostate hyperplasia and non-metastatic prostate cancer: possible role in cancer progression. Neoplasma. 55(5):442-6.
61. Chang H.H., Huang Y.M., Wu C.P., Tang Y..C, Liu C.W., Huang C.H., Ho L.T., Wu L.Y., Kuo Y.C., Kao Y.H., 2012. Endothelin-1 stimulates suppressor of cytokine signaling-3 gene expression in adipocytes. Gen Comp Endocrinol. 178(3):450-8.
62. Chang H.H., Tsai P.H., Liu C.W., Ku H.C., Kao C.C., Kao Y.H., 2013. Cycloheximide stimulates suppressor of cytokine signaling-3 gene expression in 3T3-L1 adipocytes via the extracellular signal-regulated kinase pathway. Toxicol Lett. 217(1):42-9.
63. Chen R., Alvero A.B., Silasi D.A., Steffensen K.D., Mor G., 2008. Cancers take their Toll--the function and regulation of Toll-like receptors in cancer cells. Oncogene. 27(2):225-33.
64. Rezania S., Amirmozaffari N., Rashidi N., Mirzadegan E., Zarei S., Ghasemi J., Zarei O., Katouzian L., Zarnani AH., 2014. The same and not the same: heterogeneous functional activation of prostate tumor cells by TLR ligation. Cancer Cell Int. 14:54.
65. Matsunaga N., Tsuchimori N., Matsumoto T., Ii M., 2011. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol. 79(1):34-41.
66. Cheng K., Wang X., Zhang S., Yin H., 2012. Discovery of small-molecule inhibitors of the TLR1/TLR2 complex. Angew Chem Int Ed Engl. 51(49):12246-9.
67. Benomar Y., Gertler A., De Lacy P., Crépin D., Ould Hamouda H., Riffault L., Taouis M., 2013. Central resistin overexposure induces insulin resistance through Toll-like receptor 4. Diabetes. 62(1):102-14.
68. Gan A.M., Butoi E.D., Manea A., Simion V., Stan D., Parvulescu M.M., Calin M., Manduteanu I., Simionescu M., 2013. Inflammatory effects of resistin on human smooth muscle cells: up-regulation of fractalkine and its receptor, CX3CR1 expression by TLR4 and Gi-protein pathways. Cell Tissue Res. 351(1):161-74.
69. Tang Y.C., Liu C.W., Chang H.H., Juan C.C., Kuo Y.C., Kao C.C., Huang Y.M., Kao Y.H., 2014. Endothelin-1 stimulates resistin gene expression. Endocrinology. 155(3):854-64.
70. Starr R., Willson T.A., Viney E.M., Murray L.J., Rayner J.R., Jenkins B.J., Gonda T.J., Alexander W.S., Metcalf D., Nicola N.A., Hilton D.J., 1997. A family of cytokine-inducible inhibitors of signalling. Nature. 387(6636):917-21.
71. Steppan C.M., Bailey S.T., Bhat S., Brown E.J., Banerjee R.R., Wright C. M., Patel H.R., Ahima R.S., Lazar M.A., 2001. The hormone resistin links obesity to diabetes. Nature 409:307-312.
72. Rajala M.W., Qi Y., Patel H.R., Takahashi N., Banerjee R., Pajvani U.B., Sinha M.K., Gingerich R.L., Scherer P.E., Ahima R.S., 2004. Regulation of Resistin Expression and Circulating Levels in Obesity, Diabetes, and Fasting. Diabetes 53:1671–1679.
73. Feng X., Tang H., Leng J., Jiang Q., 2014. Suppressors of cytokine signaling (SOCS) and type 2 diabetes. Mol Biol Rep. 41(4):2265-74.
74. Suchy D., Łabuzek K., Machnik G., Kozłowski M., Okopień B., 2013. SOCS and diabetes--ups and downs of a turbulent relationship. Cell Biochem Funct. 31(3):181-95.
指導教授 高永旭(Yung-hsi Kao) 審核日期 2015-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明