以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:103 、訪客IP:18.119.102.149
姓名 黃重瑜(Chung-yu Huang) 查詢紙本館藏 畢業系所 光機電工程研究所 論文名稱 包藥電弧銲進行S45C/SS400異材銲接後經不同熱處理溫度之冶金與機械性質研究
(The effect of a post-weld heat treatment on the metallurgical and mechanical properties of SS400 and S45C dissimilar joints welded by the gas shielded flux cored arc welding)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 銲接用於船舶,橋樑,壓力容器,工業機械,汽車,機車車輛等諸多領域。與銲接相關的問題,亦在這些領域中出現。鋼的可銲接性與銲接熱影響區(HAZ)的最大硬度和銲縫的冷裂紋敏感性有關。當鋼的銲接基材金屬在受銲接時的非均勻加熱和冷卻,會生成較硬的熱影響區(HAZ),此會有冷裂紋敏感性和殘餘應力存留在銲件中。減少上述困難最好的方法就是緩慢的加熱與冷卻母材及銲接熱影響區。然而有許多方法用於減少上述問題的影響,其中之一就是預熱與後熱,其已被廣泛應用在銲接操作中,用於防止冷裂紋。實驗技術是雙V溝槽設計以對接方式採用包藥銲線電弧銲(Gas shielded Flux Cored Arc Welding,FCAW-G)自動送線機器,搭配相當於美國銲接協會之AWS A5.20 E70T-1 規格之包藥銲條執行,銲條直徑1.2 mm,並輔以流率20Lmin-1遮蔽氣體CO2銲接而成。本研究主要探討預熱與銲後熱處理在JIS G3101 SS400 結構鋼與AISI 1045 中碳鋼兩種不同材質的異材銲接中顯微組織與機械性質上之影響,以消除S45C熱影響區的最高硬度並提高韌性,嘗試找出最佳化參數,將製程標準化後,確保不同的銲接機具與人員皆能達成相同的銲接品質,以符合工業上之需求。 摘要(英) Ships, bridges, pressure vessels, industrial machinery, automobile, rolling stock and many other fields are all produced by welding technology. The common problem in these fields is associated with welding process. The maximum hardness of the heat affected zone (HAZ) and the cold cracking susceptibility of welds are results in Weldability of steel. It would generate harder HAZ, cold crack susceptibility and residual stress in weldment, when steel is welded non uniform heating and cooling in weld metal and in base metal. To slow the heating and cooling rate of the base metal and weld heat affected zone is the best way to minimize difficulties above. However there are many methods to solve it and one of them is preheating and post weld heat treatment (PWHT). Preheating and PWHT have been widely employed in welding operation for preventing cold cracking and the maximum hardness in HAZ. The weldments with double V groove type were butt-welded by multiple passes as shown in Fig. 2. An automated Gas shielded Flux-Cored Arc Welding (FCAW-G) machine was used, with a welding wire of diameter 1.2 mm and CO2 shielding gas at 20 Lmin-1 flow rate, conforming to the American Welding Society standards AWS A5.20. In this study, it investigate the effects of preheating and PWHT on the microstructure, mechanical properties of JIS G3101 SS400 structural steel and AISI 1045 midium carbon steel dissimilar joints. It would eliminate the maximum hardness in the S45C HAZ and increase the toughness of the weldment. The welding process would be standardized which base on the obtained optimization parameters, in order to ensuring the welding quality from different workers that could reach the demands of industry. 關鍵字(中) ★ 異材銲接
★ 氣體保護包藥電弧銲
★ 銲後熱處理關鍵字(英) ★ dissimilar welding
★ FCAW-G
★ PWHT論文目次 摘 要 ........................................................................................................................ I
Astract ....................................................................................................................... II
誌 謝 ..................................................................................................................... III
第一章 緒論 ....................................................................................................................... 1
1-1 研究背景與動機 ........................................................................................................ 1
1-2 研究目的與方法 ........................................................................................................ 2
第二章 文獻回顧 ................................................................................................................. 3
2-1 SS400結構用鋼與S45C中碳鋼簡介 ................................................................. 3
2-2 銲後溫度分布與區域 .............................................................................................. 5
2-3 單道次與多道次銲接的影響 ................................................................................ 7
2-4 常用銲接種類簡介 .................................................................................................. 8
2-5 包藥電弧銲簡介 ..................................................................................................... 10
2-6 保護氣體的功用與特性 ....................................................................................... 11
2-7 銲接銲條的功用與特性 ....................................................................................... 12
2-8 預熱處理之影響 ..................................................................................................... 13
2-9 銲後熱處理之影響 ................................................................................................ 14
2-10 中碳鋼與低碳鋼金相組織 ................................................................................ 16
第三章 實驗流程與設備 .................................................................................................. 18
3-1預後熱對S45C與SS400異材銲件之實驗流程 ............................................ 18
3-2 母材金屬S45C、SS400與TWE-711銲線之化學成份與機械性質 ....... 20
VI
3-3預後熱對S45C與SS400異材銲件之銲接參數 ............................................ 21
3-3-1預後熱對S45C與SS400異材銲件機械性質影響之熱處理曲線 ....... 22
3-3-1 S45C與SS400異材銲件機械性質影響之銲接道次 .............................. 23
3-3-3預熱300oC與後熱400、500、600oC處理之銲接參數 ........................ 23
3-4 S45C與SS400異材銲件之試片製作 ............................................................... 24
3-4-1光學觀察試片與微硬度試片製作 ................................................................ 25
3-4-2拉伸試片製作 .................................................................................................... 26
3-4-4衝擊試片製作 .................................................................................................... 27
3-4-5彎曲試片製作 .................................................................................................... 28
3-5 實驗設備簡介 ......................................................................................................... 29
3-5-1 C sun與Lindberg加熱爐 ............................................................................... 29
3-5-2 Olympus光學顯微鏡 ....................................................................................... 30
3-5-3 MTS 810萬用材料試驗機.............................................................................. 31
3-5-4 鐘擺式衝擊試驗機 .......................................................................................... 32
3-5-5 Mitsutoyo維氏硬度試驗機 ............................................................................ 33
3-5-6 彎曲試驗機 ........................................................................................................ 34
3-5-7 Hitachi-3400N 掃描式電子顯微鏡 .............................................................. 35
第四章 結果討論 ............................................................................................................... 36
4-1預後熱對S45C與SS400異材銲接之光學顯微觀察 ................................... 36
4-1-1 S45C與SS400基材金相圖 ........................................................................... 36
4-1-2 TWE-711無熱處理與預熱300oC後熱500oC處理之金相圖 .............. 37
4-2預後熱對S45C與SS400異材銲接之拉伸實驗 ............................................ 39
4-2-1 TWE-711預熱300oC與後熱400、500、600oC處理之拉伸柱狀圖 . 39
4-2-2 TWE-711無熱處理與預熱300oC後熱500oC處理之SEM圖 ............ 40
VII
4-3預後熱對S45C與SS400異材銲接之衝擊實驗 ............................................ 41
4-3-1 TWE-711預熱300oC與後熱400、500、600oC處理之衝擊折線圖 . 41
4-3-2無熱處理與預熱300oC後熱500oC處理之衝擊SEM圖 ...................... 42
4-4預後熱對S45C與SS400異材銲接之微硬度實驗 ........................................ 43
4-4-1 TWE-711無熱處理與預熱300oC處理之微硬度曲線圖 ....................... 43
4-4-2 TWE-711無熱處理與預熱300oC後熱500oC處理之微硬度曲線圖 . 45
4-5預後熱對S45C與SS400異材銲接之彎曲實驗 ............................................ 46
4-5-1 TWE-711無熱處理與預熱300oC後熱500oC處理之彎曲後巨觀圖 . 46
第五章 結論 ....................................................................................................................... 48
參考文獻 ............................................................................................................................... 49
VIII
圖 目 錄
圖1-1 (a)門型機械精密沖床,(b)上箱3D圖,(c)齒輪3D圖,(d)實際異材銲接齒輪圖 ......................................................................................................... 1
圖2-1 (a)軟鋼銲接之銲件瞬間溫度分佈圖(W:液態銲池金屬),箭頭為銲接方向,(b)銲道、熱影響區及基材金屬[7] ......................................................... 5
圖2-2銲道及熱影響區的溫度分佈與鐵碳帄衡圖的關係[8] ............................ 6
圖2-3 (a)單道(b)多道次銲道之熱影響區[8,9] ................................................... 7 圖2-4氣體保護包藥電弧銲接示意圖[15] ....................................................... 10
圖2-5銲接參數對銲道大小,熱影響區及熱行為之影響[7] .......................... 13
圖2-6 鐵碳帄衡圖,顯示製程退火,再結晶退火,弛力退火和球化等溫度範圍[19] ............................................................................................................. 14
圖2-7 (a)低碳鋼(b)中碳鋼的CCT曲線(c)各金相組織圖[22-23] ................... 16
圖3-1 預後熱對S45C與SS400異材銲件機械性質影響之實驗流程圖 ....... 18
圖3-2 FCAW-G電銲機 .................................................................................... 21
圖3-3 (a)預熱處理,(b)後熱處理曲線圖 ........................................................ 22
圖3-4 用於S45C與SS400異材銲件之溝槽尺寸與道次順序 ...................... 23
圖3-5 試片取料圖(a)S45C基材衝擊試片,(b)SS400基材衝擊試片,(c)S45C熱影響區衝擊試片,(d)SS400熱影響區衝擊試片,TWE-711與TWE811之(e)銲道衝擊試片(f)微硬度試片(g)彎曲試片,(h)拉伸試片。 ................ 24
圖3-6 S45C與SS400異材銲件之微硬度試片實體圖 .................................... 25
圖3-7 (a)拉伸尺寸圖,(b)單道次多道次拉伸試片實體圖 ............................. 26
圖3-8 衝擊試片尺寸圖 .................................................................................... 27
圖3-9 S45C與SS400異材銲件之衝擊試片缺口在(a)銲道,(b)S45C熱影響區,(c)SS400熱影響區之實體圖。..................................................................... 27
圖3-10彎曲試片(ASTM)標準尺寸圖 .............................................................. 28
IX
圖3-11預後熱對S45C與SS400異材銲件之彎曲試片實體圖 ..................... 28
圖3-12 (a) C sun大型加熱爐 (b) Lindberg加熱爐外觀內部(c) 高,(d) 深,(e)寬尺寸 ........................................................................................................... 29
圖3-13 Olympus光學顯微鏡 ........................................................................... 30
圖3-14 MTS 810萬用材料試驗機 ................................................................... 31
圖3-15鐘擺式衝擊試驗機 ............................................................................... 32
圖3-16 Mitsutoyo維氏硬度試驗機 .................................................................. 33
圖3-17 彎曲試驗機.......................................................................................... 34
圖3-18 HITACHI 掃描式電子顯微鏡 ............................................................. 35
圖4-1 (a1)中碳鋼母材-500倍,(b1)SS400母材-500倍,(a2)中碳鋼,(b2)SS400使用金相分析軟體Image pro-plus照片,綠色是肥粒鐵,紅色為波來鐵 36
圖4-2(a)無預熱試片(b)S45C熱影響區(c)銲道(d)SS400熱影響區,以上金相組織倍率為500倍 ........................................................................ 37
圖4-3(a)有預熱300oC後熱500oC的試片(b)S45C熱影響區(c)銲道(d)SS400熱影響區,以上金相組織倍率為500倍 ................................ 37
圖4-4 TWE-711未經熱處理與預熱300oC後熱400、500、600oC處理之拉伸柱狀圖 ........................................................................................................... 39
圖4-5 (a)為未熱處理銲接試片破斷圖; (b)在虛線區域b的500倍-放大視圖; (c)在虛線區域c的2000倍-放大視圖 ......................................... 40
圖4-6 (a)為預熱300oC與後熱500oC處理銲接試片破斷圖; (b)在虛線區域b的500倍-放大視圖; (c)在虛線區域c的2000倍-放大視圖 ..... 40
圖4-7未經熱處理與預熱300oC後熱400、500、600oC處理之衝擊折線圖 41
圖4-8夏比衝擊SEM斷口銲接試片:(a1,a2為S45C 熱影響區2000倍)和(b1,b2為銲道2000倍)和(C1,C2為SS400熱影響區2000倍),a1-a3為無熱處理試片,b1-b3為銲前預熱300oC銲後熱處理500oC試片 ........ 42
X
圖4-9(a1)無預熱的試片(b1)有預熱300oC的試片(a2)無預熱 (b2)有預熱300oC S45C熱影響區微硬度分布(a3)無預熱 (b3)有預熱300oC S45C熱影響區光學顯微圖,以上金相組織倍率為500倍。.............................. 43
圖4-10 異材銲接未經熱處理與預熱300oC後熱400、500、600oC處理之微硬度曲線 (a)量測銲根底部的硬度(b)量測銲道上方的硬度 ....................... 45
圖4-11 TWE-711未經熱處理(a)側視、(c)上視與預熱300oC後熱500oC處理(b)側視、(d)上視之彎曲後巨觀圖 ............................................................... 46
XI
表 目 錄
表2-1中碳鋼與其它金屬物理性質比較 .......................................................... 4
表2-2中碳鋼與其它金屬機械性質比較 .......................................................... 4
表2-3不同銲接方法的優缺點[16] ................................................................... 8
表2-4各種銲接方法綜合比較圖[16] ............................................................... 9
表3-1 SS400結構鋼與S45C中碳鋼化學成份與母材金屬的機械性質 ....... 20
表3-2 TWE-711銲條的化學成分和機械性質 ............................................... 20
表3-3 S45C與SS400預熱與銲後熱處理異材銲接處理之銲接參數 .......... 23參考文獻 2006. p. 249. ISBN 0-07-295358-6.
[3] Smith WF, Hashemi J. Foundations of Materials Science and Engineering 4th. McGraw-Hill; 2006. p. 373-378. ISBN 0-07-295358-6.
[4] Smith WF, Hashemi J. Foundations of Materials Science and Engineering 4th. McGraw-Hill; 2006. p. 388. ISBN 0-07-295358-6.
[5] Bang H, Kim Y. in Proceedings of the Annual Meeting of Korean Welding Society 2001:134.
[6] Jeong HC. Welding characteristics of S45C medium carbon steel in laser welding process using a high power CW Nd YAG laser. J Korean Weld Soc 1999; 17:1.
[7] 蔡金峯、姜志華,”銲接冶金概論”,徐氏基金會,台北,民國76年8月,p16。
[8] 賴振慶,”ASTM A533與A572異種基材金屬銲接之銲接性質研究”,成功大學機械工程學系碩士在職專班學位論文,台南,民國95年,p4。
[9] Aloraier AS, Ibrahim RN, Ghojel J. Eliminating post-weld heat treatment in repair welding by temper bead technique: role bead sequence in metallurgical changes. J Mater Process Technol 2004; 153-154: 392-400.
[10] 馮春源,”鋼結構用鋼材與銲材”,天泰銲材工業股份有限公司。
[11] Murugan S, Rai SK, Kumar PV, Jayakumar T, Raj B, Bose MSC. Temperature distribution and residual stresses due to multipass welding in type 304 stainless steel and low carbon steel weld pads. Int J Pres Ves Piping 2001;78:307-17.
50
[12] Kang JG, Ryu GS, Kim DC, Kang MJ, Park YW, Rhee S. Optimization of arc-start performance by wire-feeding control for GMA welding. J Mech Sci Technol 2013; 27(2):501-9.
[13] Kou S. Welding metallurgy. 2nd ed. A Wiley-Interscience Publication; 2002.
[14] Babu SPK, Natarajan S. High temperature corrosion and characterization studies in flux cored arc welded 2.25Cr-1Mo power plant steel. J Mater Eng Perform 2010; 19:743-50.
[15] 周長彬、蘇程裕、蔡丕樁、郭央諶,”銲接學”,全華圖書股份有限公司,台北,民國101年1月。
[16] Liao MT, Chen WJ. A comparison of gas metal arc welding with flux-cored wires and solid wires using shielding gas. Int J Adv Manuf Technol 1999; 15:49-53.
[17] Myers T. Cost, overall operator appeal, and weld quality must all be considered when selecting the shielding gas for a flux cored arc welding application. Weld J 2010; 80:30-3.
[18] ”TWE-711規格”,天泰銲材股份有限公司,台南市仁德區
[19] 溫烱亮、傅豪、李正國、林本源,”熱處理”,高立圖書有限公司,台北,民國86年12月,p76。
[20] ASME. Boilers & Pressure Vessels code. Section I: power boiler 2015 edh.
[21] JIS Z3700. Methods of post weld heat theatment; 1987.
[22] Manigandan K, Srivatsan TS, Quick T, Sastry S, Schmidt ML. Influence of microstructure and load ratio on cyclic fatigue and final fracture behavior of two high strength steels, Mater Des 2014; 55: 727-39.
[23] Shena S, Oguochaa INA, Yannacopoulos S. Effect of heat input on weld bead geometry of submerged arc welded ASTM A709 Grade 50 steel joints, J Mater Process Technol 2012; 212: 286–94.
51
[24] Mirzaei M, Jeshvaghani RA, Yazdipour A, Zangeneh-Madar K. Study of welding velocity and pulse frequency on microstructure and mechanical properties of pulsed gas metal arc welded high strength low alloy steel. Mater Des 2013; 51:709-13.
[25] Askland DR, Phule PP. The science and engineering of materials 4th ed. Pacific Grove, CA: Brooks Cole-Thompson Learning 2003.
[26] Lan L, Qiu C, Zhao D, Gao X, Du L. Analysis of martensite–austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel. J Mater Sci 2012; 47:4732-42.
[27] Gharibshahiyan E, Raouf AH, Parvin N, Rahimian M. The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding. Mater Des 2011; 32:2042-48.
[28] Kumar S, Shahi AS. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints, Mater Des 2011; 32:3617-23.
[29] Lee JS, Jeong SH, Lim DY, Yun JO, Kim MH. Effects of welding heat and travel speed on the impact property and microstructure of FC welds. Met Mater Int 2010; 16:827-32.
[30] Kumar VV, Murugan N. Effect of FCAW process parameters on weld bead geometry in stainless steel cladding. J Miner Mater Char Eng 2011; 10:827-42.
[31] Aloraier A, Almazrouee A, Shehata T, Price JWH. Role of welding parameters using the flux cored arc welding process of low alloy steels on bead geometry and mechanical properties. J Mater Eng Perform 2012; 21:540-47.
[32] ASTM International Standard E23. Standard test methods for notched bar impact testing of metallic materials 2013.
[33] ASTM International Standard E190-92. Standard Test Method for Guided
52
Bend Test for Ductility of Welds 2013.
[34] ASTM International Standard E384. Standard test method for knoop and vickers hardness of materials 2014.
[35] Lee JS, Jeong SH, Lim DY, Yun JO, Kim MH. Effects of welding heat and travel speed on the impact property and microstructure of FC welds. Met Mater Int 2010; 16:827-32.
[36] Svensson LE, Control of Microstructures and Properties in Steel Arc Welding, CRC Press, Boca Raton, FL, 1994.
[37] Chapetti MD, Miyata H, Tagawa T, Miyata T, Fujioka M, Fatigue strength of ultra-fine grained steels. Mater Sci Eng A 2004; 381:331.指導教授 傅尹坤 審核日期 2015-1-14 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare