博碩士論文 89226007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:87 、訪客IP:18.191.225.216
姓名 曾勝揚(Sheng-Yang Zeng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 磷化銦鎵/砷化鎵平面摻雜異質接面雙極性電晶體之研製
(磷化銦鎵/砷化鎵平面摻雜異質接面雙極性電晶體之研製)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ P型氮化鎵歐姆接觸製作研究
★ 應用聚對位苯基乙烯高分子材料製作有機發光二極體★ 氮離子佈植於氮化鎵之特性研究
★ 磷化銦鋁鎵/砷化鎵/砷化銦鎵對稱型平面摻雜場效電晶體研究★ 1550 nm 直調式光纖有線電視長距離傳輸系統
★ 以保角映射法為基礎之等效波導理論:理想光波導之設計與分析★ 銦鋅氧化膜基本特性及其與氮化鎵接觸應用之研究
★ 氮化鎵藍色發光二極體透明電極之製作與研究★ 透明導電膜與氮化鎵接觸特性研究
★ 連續時間電流式濾波與振盪電路設計與合成★ 氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光檢測器之研究
★ 陣列波導光柵波長多工器設計與分析★ 室溫沈積高穩定性之氮化矽薄膜及其光激發光譜研究
★ 雙向混合DWDM系統架構在80-km LEAF上傳送CATV和OC-48信號★ N型氮化鎵MOS元件之製作與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本論文利用分子束磊晶(Molecular Beam Epitaxy, MBE)成長磷化銦鎵/砷化鎵平面摻雜異質接面雙極性電晶體(InGaP/GaAs δ doped HBT),利用平面摻雜(δ doped)技術提昇基極的金屬-半導體之歐姆接觸特性,降低基極之串聯阻抗,進而提高功率增益截止頻率或最大振盪頻率(fmax),並利用平面摻雜技術對基極區域電位的調變(potential modulation),內建基極區域之加速電場,降低載子穿越基極之傳輸時間,進而提高截止頻率(cut-off frequency, ft)。
首先比較具有空間層(spacer)及平面摻雜的磷化銦鎵/砷化鎵異質接面雙極性電晶體(InGaP/GaAs HBT)與一般磷化銦鎵/砷化鎵異質接面雙極性電晶體之直流特性差異,並針對基極之歐姆接觸做進一步的探討。
在基極與未摻雜(undoped)之空間層間加入平面摻雜,調變基極金屬電極與基極半導體間之電位與雜質濃度,可以有效改善基極金屬電極的特徵電阻值(ρC),其值約在10-4 ~ 10-5 (Ω-cm2),證明平面摻雜對金屬與半導體接面歐姆接觸特性有顯著的提昇。
由射極-基極接面的電特性量測,具有空間層及平面摻雜之磷化銦鎵/砷化鎵異質接面雙極性電晶體(A結構)之起始電壓(Vturn-on)約1.45V,而一般不具空間層及平面摻雜的磷化銦鎵/砷化鎵異質接面雙極性電晶體(B結構)只有1.1V,可了解平面摻雜對此異質接面具有顯著的電位調變作用;此外,A結構明顯有較高的漏電流,在-2V時約數十個nA,而B結構只有數個nA。
於梗美樂-普恩繪圖(Gummel-Poon Plot)量測中,由於A結構之射極-基極有較大的漏電流,所以其電流增益約只有4,而B結構之電流增益約40;A結構主要是靠載子穿隧(tunneling)效應為電流成分,故理想因子η > 2,而B結構η接近於1,是以晶體復合電流(IB,bulk)為主要成分。
而在共射極電流增益(IC-VCE)量測中,兩個結構都不受歐利效應(Early effect)之影響,表示基極-集極接面濃度分佈相當陡峭(abrupt)。萃取補償電壓(VCE,offset)可以得到A結構約0.55V,B結構約0.15V,平面摻雜之電位調變在此得到應證。
關鍵字(中) ★ 磷化銦鎵
★ 砷化鎵
★ 平面摻雜
★ 脈衝摻雜
★ 脈波摻雜
★ 原子層摻雜
★ 突尖型摻雜
★ 歐姆接觸
★ 異質接面
★ 異質接面雙極性電晶體
關鍵字(英) ★ atomic layer doping
★ pulse doping
★ delta doping
★ planar doping
★ GaAs
★ InGaP
★ heterojunction
★ HBT
★ spike doping
★ Ohmic contact
論文目次 目錄
圖目錄 III
表目錄 VI
第一章 導論 01
1.1 研究動機 01
1.2 異質接面雙極性電晶體簡介 03
第二章 異質接面雙極性電晶體的基本原理及平面摻雜技術與應用 05
2.1 異質接面雙極性電晶體的基本原理 05
2.2 平面摻雜技術的基本原理 10
2.2-1 平面摻雜基本觀念 10
2.2-2 平面摻雜之成長技術 11
2.3 平面摻雜技術的應用 14
2.3-1 電位和電場的分析 15
2.3-2 平面摻雜於異質接面雙極性電晶體之應用 17
第三章 異質接面雙極性電晶體結構與製作流程 19
3.1 異質接面雙極性電晶體的磊晶結構 19
3.2 異質接面雙極性電晶體的製程步驟 23
第四章 異質接面雙極性電晶體元件特性的量測與分析 30
4.1 異質接面雙極性電晶體的直流特性量測 30
4.2-1 特徵接觸電阻的量測與分析 31
4.2-2 射極與基極異質接面的量測與分析 32
4.2-3 基極與集極接面的量測與分析 33
4.2-4 梗美樂-普恩繪圖量測與分析 34
4.2-5 共射極輸出特性及補償電壓之量測與分析 35
第五章 結論與未來展望 38
參考資料 41
參考文獻 參考資料:
[1] H. Kroemer, “Heterostructure bipolar transistors and integrated
circuit,” Proc. IEEE, vol. 70, pp. 13-25, 1982.
[2] H. Kroemer, “Heterostructure bipolar transistors: What should we
build?,” J. Vac. Sci. Tech., vol. B1, pp. 126-130, 1983.
[3] P. M. Asbeck, Mau-Ching, J. A. Higgins, N. H. Sheng, G. J. Sullivan, and
K. C. Wang, “GaAlAs/GaAs Heterojunction bipolar transistors: Issues and
prospects for application,” IEEE Trans. Electron Devices, vol. 36, no.
10, pp. 2032-2042, 1989.
[4] S. M. Sze, High-speed Semiconductor Devices, Wiley, New York, 1990.
[5] G. O. Ladd and D. L. Feucht, “Performance potential of high-frequency
Heterojunction transistor,” IEEE Trans. Electron Devices, vol. 17, pp.
413-420, 1970.
[6] W. Liu and S. K. Fan, “Near-idea I-V characteristics of GaInP/GaAs
Heterojunction Bipolar Transistor,” IEEE Electron Device Lett., EDL-13,
pp.501-512, 1992.
[7] M. A. Rao, E. J. Caine, H. Kroemer, S. I. Long, and D. I. Babic, “
Determination of valence and conduction-band discontinuities at the (Ga,
In)P/GaAs Heterojunction by C-V profiling,” J. Appl.Phys., vol. 61, pp.
643-648, 1987.
[8] W. Liu and S. K. Fan, T. S. Kim, E. A. Beam III, D. B. Davito, “Current
Transport Mechanism in GaInP/GaAs Heterojunction Bipolar Transistor,”
IEEE Trans. Electron Devices, vol. 40, pp. 1378-1382, August 1993.
[9] J. R. Loyhian, J. M. Kuo, F. Ren, and S. J. Pearton, “Plasma and wet
chemical etching of In0.5Ga0.5P,” J. Electronic Materials, vol. 21, pp.
441-445, 1992.
[10] J. M. Olson, R. K. Ahrenkiel, D. J. Dunlavy, B. Keyes, and A. E. Kibber,
“Ultralow recombination velocity at Ga0.5In0.5P heterointerfaces,” Appl.
Phys. Lett., vol. 55, pp. 1208-1210, 1989.
[11] L. W. Laih, S. Y. Cheng, W. C. Wang, P. H. Lin, J. Y. Chen, W. C. Liu,
and W. Lin, “High-performance InGaP/InGaAs/GaAs step-compositioned doped-
channel field-effect transistor (SDCFET),” IEE Electron. Lett., vol. 33,
NO. 1, pp. 98-99, 1997.
[12] W. Liu, “Fundamentals of III-V Devices,” Wiley, New York, pp. 146-150,
1999.
[13] B. Willén, U. Westergren, and H. Asonen, “High-Gain, High-Speed
InP/InGaAs Double-Heterojunction Bipolar Transistors with a Step-Graded
Base-Collector Heterojunction,” IEEE Electron Device Lett., vol. 16, NO.
11, pp. 479-481, Nov. 1995.
[14] William Liu ,”Ideality Factor of Extrinsic Base Surface Recombination
Current in AlGaAs/GaAs Heterojunction Bipolar Transistors”, IEEE
Electron Letters 13th, vol. 28 ,NO. 4, pp. 379-380,February 1992.
[15] William Liu, Edward Beam, Timothy Henderson, and Shou-Kong Fan,
“Extrinsic Base Surface Passivation in GaInP/GaAs Heterojunction Bipolar
Transistor,” IEEE Electron Device Letters, vol. 14, NO. 6, pp. 301-303,
June 1993.
[16] Y. F. Yang, C. C. Hsu, and E. S. Yang, “Surface Recombination Current in
InGaP/GaAs Heterostructure-Emitter Bipolar Transistors,” IEEE
Transactions Electron Device, vol. 41, NO. 5, pp. 643-647, May 1994.
[17] R. J. Malik, L. M. Lunardi, J. F. Walker, and R. W. Ryan, “A Planar-
Doped 2D-Hole Gas Base AlGaAs/GaAs Heterojunction Bipolar Transistor
Grown by Molecular Beam Epitaxy,” IEEE Electron Device Letters, vol. 9,
NO. 1, pp. 7-9, January 1988.
[18] K. W. Goossen, T. Y. Kuo, J. E. Cunningham, W. Y. Jan, Fan Ren, and C. G.
Fonstad, “A Planarization of Emitter-Base Structure of Heterojunction
Bipolar Transistors by Doping Selective Base Contact and Nonalloyed
Emitter Contact,” IEEE Transaction on Electron Devices, vol. 38, NO. 11,
pp. 2423-2426, November 1991.
[19] T. Y. Kuo, J. E. Cunningham, K. W. Goossen, W. Y. Jan, C. G. Fonstad, and
F. Ren, “Monolayer Be δ-Doped Heterostructure Bipolar Transistor
Fabricated Using Doping Selective Base Contact,” Electronics Letters,
vol. 26, NO. 15, 19th, pp. 1187-1188, July 1990.
[20] K. W. Goossen, J. E. Cunningham, T. Y. Kuo, W. Y. Jan, and C. G. Fonstad,
“Monolayer δ-doped heterojunction bipolar transistor characteristics from
10 to 350K,” Appl. Phys. Lett., vol. 59, NO. 6, 5, pp.682-684, August
1991.
[21] J. R. Hayes, F. Capasso, A. C. Gossard, R. J. Malik, W. Wiegmann,
“Bipolar transistor with graded band-gap base,” Electron. Lett., vol.
19, pp. 410, 1983.
[22] D. L. Miller, P. M. Asbeck, R. J. Anderson, and F. H. Eisen, “(GaAl)
As/GaAs heterojunction bipolar transistor with graded composition in the
base,” Electron. Lett., vol. 19, pp.367, 1983.
[23] R. J. Malik et al., “High-gain, high frequency AlGaAs/GaAs graded band-
gap base bipolar transistors with a Be diffusion setback layer in the
base,” Appl. Phys. Lett., vol. 46, pp. 600, 1985.
[24] B. F. Levine et al., “Measurement of high electron drift velocity in a
submicron, heavily doped graded gap AlxGa1-xAs layer,” Appl. Phys.
Lett., vol. 42, pp. 769, 1983.
[25] J. I. Song, W. P. Hong, C. J. Palmstrom, B. P. Van der Gaag, and K. B.
Chough, “Millimetre-wave InP/InGaAs Heterojunction bipolar transistors
with a subpicosecond extrinsic delay time,” Electronics Letters, vol.
30, NO. 5, 3rd, pp. 456-457, March 1994.
[26] H. R. Chen, C. H. Huang, C. Y. Chang, C. P. Lee, K. L. Tsai, and J. S.
Tsang, “Heterojunction Bipolar Transistors with Emitter Barrier Lowered
by δ-Doping,” IEEE Electron Device Letters, vol. 15, NO. 8, pp. 286-288,
August 1994.
[27] W. C. Liu, H. J. Pan, S. Y. Cheng, W. C. Wang, J. Y. Chen, S. C. Feng,
and K. H. Yu, “Applications of an In0.53Ga0.25Al0.22As/InP continuous-
conduction-band structure for ultralow current operation transistors,”
Appl. Phys. Lett., vol. 75, pp. 572-574, 1999.
[28] P. C. Chang, A. G. Baca, N. Y. Li, X. M. Xie, H. Q. Hou, and E. Armour,
“InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor,” Appl.
Phys. Lett., vol. 76, pp. 2262-2264, 2000.
[29] W. C. Liu, J. Y. Chen, W. C. Wang, S. C. Feng, K. H. Yu, J. H. Yan,
“Design consideration of emitter-base junction structure for InGaP/GaAs
heterojunction bipolar transistor,” Optoelectronic and Microelectronic
Materials Devices, 1998. Proceedings. 1998 Conference on, pp. 246 –248,
1999.
[30] C. E. Chang, P. F. Chen, P. M. Asbeck, L. T. Tran, D. C. Streit, A. K.
Oki, “Lightly doped emitter HBT for low-power circuits,” IEEE Microwave
and Guided Wave Letters, vol. 7, NO. 11, pp. 377 –379, November 1997.
[31] W. S. Lour, W. L. Chang, L. T. Hung, “Investigation of InGaP/GaAs single
and double heterojunction bipolar transistors by doping spike,”
Optoelectronic and Microelectronic Materials and Devices Proceedings,
1996 Conference on, pp. 271-274, 1996.
[32] C. E. Chang, P. M. Asbeck, L. T. Tran, D. C. Streit, , A. K. Oki, “Novel
HBT structure for high ft at low current density,” Electron Devices
Meeting, 1993. Technical Digest., International, pp. 795-798, 1993.
[33] S. A. Stockman, A. W. Hanson, and G. E. Stillman, ”Growth of Carbon-
Doped p-type InXGa1-XAs(0<X≦0.53)by Metalorganic Chemical Vapor
Deposition,” Appl. Phys. Lett., vol. 60, NO. 8, pp. 2903-2905, June 1992.
[34] S. R. Bahl, N. Moll, V. M. Robbins, H-C Kuo, B. G. Moser, and G. E.
Stillman, “Be Diffusion in InGaAs/InP Heterojunction Bipolar
Transistors,” IEEE Electron Device Lett., vol. 21, NO. 7, pp. 332-334,
July 2000.
[35] K. Hong and D. pavlidis, ”Heavily Carbon Doped InGaAs Lattice Matched to
InP Grown by LP-MOCVD Using TMIn, TMGa and Liquid CCl4,” Indium
Phosphide and Rleated Materials. Conference Proceedings., Seventh
International Conference on, pp. 144-147, 1995.
[36] K. Nagata, O. Nakajima, Y. Yamauchi, and T. Ishibasi, A new self-aligned
structure AlGaAs/GaAs HBT for high speed digital circuirs, Gallium-
Arsenide and Rel. Comp., Inst. Phys. Conf. Ser., NO. 79, pp. 589-596,
1986.
[37] P. M. Asbeck, D. L. Miller, R. J. Anderson, and F. H. Eisen,
“GaAs/AlGaAs Heterojunction bipolar transistors with buried oxygen-
implanted isolation layers,” IEEE Electron Device Lett., vol. EDL-5, pp.
310-312,1984.
[38] M. F. Chang, P. M. Asbeck, D. L. Miller, and K. Wang, “GaAs/AlGaAs
Heterojunction bipolar transistors with a self-aligned substitutional
emitter process,” IEEE Electron Device Lett. vol. EDL-7, pp. 8-9, 1986.
[39] M. F. Chang, P. M. Asbeck, et al., “AlGaAs/GaAs Heterojunction bipolar
transistors fabricated using self-aligned dual-lift-off process,” IEEE
Electron Device Lett. vol. EDL-8, pp. 303-305, 1987.
[40] G. K. Reeves and H. B. Harrison, IEEE Electron Device Letters, 3, 111
(1982).
[41] Ralph E. Williams, “Gallium Arsenide Processing Techniques”, 學風出版社
(1983).
[42] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, Oxford
Science Publication.
[43] DIETER K.SCHRODER,“Semiconductor Material and Device
Characterization ”, John Wiley &Sons,INC.,1997.
[44] K. W. Goossen, J. E. Cunningham, T. H. Chiu, D.A.B. Miller and D. S.
Chemla, “Non-alloyed Al Ohmic Contact to GaAs For GaAs/Si Interconnect
Compatibility”, IEEE IEDM 89, pp. 409-410, 1989.
[45] Delong Cui, Dimitris Pavlidis, Fellow, IEEE, Shawn S. H. Hsu, and Andreas
Eisenbach, “Comparison of DC High-Frequency Performance of Zinc-Doped
and Carbon-Doped InP/InGaAs HBTs Grown by Metalorganic Chemical Vapor
Deposition”, IEEE Transactions on Electron Devices, vol. 49, NO. 5, pp.
725-732, May 2002.
[46] T. Won, S. Iyer, S. Agarwala, and H. Morkoc, ”Collector Offset Voltage
of Heterojunction Bipolar Transistors Grown by Molecular Beam Epitaxy,”
IEEE Electron Device Lett., vol. 10, no. 6, pp.274-276, June. 1989.
[47] Beng-Chye Lye, P. A. Houston, Ho-Kwang Yow, C. C. Button
“GaInP/AlGaAs/GaInP Double Heterojunction Bipolar Transistors with Zero
Conduction Band Spike at the Collector” IEEE Trans. Electron Devices,
vol. 45, NO. 12, pp. 2417-2421, Dec. 1998.
[48] Nicola Bovolon, Rüdiger Schultheis, Jan-Erik Müller, Peter Zwicknagl,
Enrico Zanoni “Theoretical and Experimental Investigation of the
Collector-Emitter Offset Voltage of AlGaAs/GaAs Heterojunction Bipolar
Transistors” IEEE Trans. Electron Devices, Vol. 46, NO.4, pp. 622-627,
April 1999.
指導教授 李清庭(Ching-Ting Lee) 審核日期 2002-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明