摘要(英) |
In order to improve profits for TFT-LCD liquid crystal display manufacturers, other than producing high value-added products, firms can also reduce waste in the manufacturing process itself. This study focuses on the background of the glass cutting process, in order to explore the use of a machine vision in a cutter wheel after high osmotic pressure glass cutting that can replace the existing manual inspection methods. A reduction in waste can also be achieved by the implementation of an early warning system.
The pre-processing of the detection method includes edge detection, binarization, patterns filtering, and thinning, then the image is processed using horizontal projection to achieve a graph of the pixel cross-section of the glass. Afterwards, the truncated average end value determines whether the rib mark line is present. Two different detection methods, the Hough transformation and the least squares method, then measure the amount of straight-line distance of the rib mark line. There are advantages and disadvantages of different image detection methods when determining the correct rate, average execution speed, and measurement accuracy. The accuracy assessment experimental design was performed using the MAPE value, with Microsoft Visual C ++ 2010 running OpenCV. There were 95 flawless images and 130 flawed images taken of the experimental samples which had a glass thickness of 0.5mm. In total, 225 test sample images were taken, and through improved testing and detection methods, the flawed and flawless image correct image determination rate was 100%. The average execution speed was 0.094 seconds, with MAPE values of 5.93%. Finally, there were 30 flawless images and 30 flawed images taken of experimental samples which had a glass thickness of 0.7mm, and the flawed and flawless correct image determination was again 100% correct. The average execution speed the MAPE values of 0.7mm glass thickness samples were similar to the 0.5mm glass thickness experimental results. This method can be successfully applied to determine of different glass cross-sectional thicknesses. |
參考文獻 |
[1] 蔡獻逸,「液晶顯示器用玻璃基板」,第406期,科學發展2006年10月。
[2] 王信陽,“TFT LCD關鍵零組件左右廠商勝負”,光連雙月刊,第58期,頁21-25,2005。
[3] 蘇泰元,"模糊影像處理技術應用於薄膜電晶體液晶顯示器面板瑕疵檢測之研究",碩士論文,台灣科技大學自動化及控制研究所,2009。
[4] 林祺銘,"玻璃基板邊緣檢測系統之研發",碩士論文,高雄應用科技大學機械與精密工程研究所,2008。
[5] 張志遠,"應用自動光學檢測系統於薄膜電晶體液晶顯示器之邊緣瑕疵檢測",碩士論文,臺灣科技大學高分子系,2008。
[6] 馮趙祥,"新式Haar-like矩形特徵於太陽能板表面及邊緣瑕疵檢測研究",碩士論文,臺灣科技大學自動化及控制研究所,2008。
[7] 李君毅,"面板邊緣缺陷檢查機BurrChecker設備系統設計與開發",碩士論文,高雄應用科技大學電機工程系,2009。
[8] 李仁淼,"觸控面板之自動化光學檢測系統的研製",碩士論文,朝陽科技大學工業工程與管理系,2014。
[9] 周建佑,"觸控面板玻璃檢測系統之開發",碩士論文,屏東科技大學機械工程系所,2012
[10] 李銘周,"薄膜電晶體液晶顯示器線中欠陷檢查之分析與分類",碩士論文,中原大學機械工程研究所,2008。
[11] 游舜豪,"應用高解析度線掃描CCD於ITO導電玻璃表面瑕疵檢測之研究",碩士論文,臺灣科技大學自動化及控制研究所,2006。
[12] 吳兆展,"玻璃基板截角尺寸視覺檢測模組之開發",碩士論文,屏東科技大學機械工程系所,2008。
[13] 龐春明,用於切割液晶基板的切割裝置及其刀壓調試方法,中華人民共和國發明專利第CN103601361 A號,2014。
[14] 友達光電股份有限公司,http://www.auo.com/?sn=47&lang=zh-TW
[15] 顧鴻壽,「光電液晶平面顯示器-技術基礎及應用」,新文京圖書,2004年
[16] 環保署http://ivy1.epa.gov.tw/agp/F/DM/aaaa/page2/life4.html
[17] 陳宥銘,連續型生產製程之設備供應商評選模式-以TFT玻璃基板製造商為例,碩士論文,國立清華大學工業工程與工程管理學系工程碩士在職專班,2006。
[18] 顏澤宇,曾俊豪,“LCD面板雷射切割技術發展現況與趨勢”,工業技術研究院機械所,機械工業雜誌,第270期,2005。
[19] Griffith A.A.,The phenomena of rupture and flow in solids. Phil. Trans. Roy. Soc. of London, A221, 163-197.,1921
[20] Inglis, C.E.,Stresses in a plate due to the presence of cracks and sharp corners. Trans. Inst. Naval Architects, 55, 219-241.,1913
[21] Toshihiko Ono and Kohichi Tanaka, “Effective of Scribing Wheel Dimensions on the Cutting of AMLCD Glass Substrates,” Corning Technical Incorporated TIP308, Nov 2004.
[22] 莊倩雅,顯微遠心鏡頭設計,碩士論文,國立屏東科技大學機械工程系所,2009。
[23]蔡孟頎,倒傳遞類神經網路於多腳位元件影像對位最佳化之研究,碩士論文,國立中央大學機械工程研究所,2008。
[24] 產業先進人才培育計畫-半導體及光電-自動化光學檢測-第六章邊緣偵測http://140.130.15.147/%E5%8D%8A%E5%B0%8E%E9%AB%94%E5%8F5%8
9%E9%9B%BB/Course%20materials.htm
[25] 曾定章, 影像處理講義, 第12 版, 中央大學, 資訊工程研究所, 中壢, 台灣, 2013年8月.
[26] Jähne B.,Scharr H., and Körkel S.,Principles of filter design. In Handbook of Computer Vision and Applications. Academic Press, 1999
[27] Canny J.,“A Computational Approach to Edge Detection,” IEEE Trans. Pattern Analysis and Machine Intelligence, VOL. 8, NO. 6, pp.679-698, Nov. 1986.
[28] 彭振軒,使用樣板比對做進出口行人數量統計,碩士論文,國立中央大學資訊工程研究所,2006。
[29] Otsu N., " A threshold selection method from gray level histograms ", IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-9, No. 1, pp.62-66, 1979.
[30] 黃自達,以相機取像之中文文件辨識前處理系統,碩士論文,國立中央大學資訊工程研究所,2007。
[31] Zhang T. Y. and Suen C. Y., “A fast parallel algorithm for thinning digital patterns,” Comm. ACM, vol. 27, no. 3, pp. 236-239, 1984.
[32] Hough P. V. C., “Method and Means for Recognizing Complex Patterns,” United States Patent office, 1962.
[33] Matas J., Galambos C., and Kittler J., ′′Progressive Probabilistic Hough Transform for line detection," Computer Vision and Pattern Recognition, vol. 1, pp. 554-560, 1999.
[34] 楊仲準,簡單線性迴歸最小平方法講義,中原大學物理系
[35] 黃惠隆、翁忠川、黃月貞,「以車輛偵測器推估旅行時間之研究 — 以北二高為例」,中華技術季刊,第63期,財團法人中華顧問工程司編印,2004。
[36] 譚克平,「極端值判斷方法簡介」,臺東大學教育學報,Vol.19, No.1, pp. 131-150
[37] Van Veen T. M.and Groen F. C. A.,“Discretization errors in the Hough transform,” Pattern Recognition, Vol. 14, No. 1, pp. 137–145, 1981.
[38] Gonzalez R. C. and Woods R. E.,Digital Image Processing, Second Edition. Prentice-Hall, New Jersey, pp. 609, 2002.
|