博碩士論文 102322069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:18.217.120.254
姓名 蔡易廷(Yi-ting Tsai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 單側雙開口建築物通風之實驗研究
(Experimental Study of Wind-dreven Ventilation with Two Openings on a Single Wall)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用風洞實驗及示踪氣體之濃度衰減法來量測單側雙開口建築物之通風量,且探討風速、風向和開口大小對通風量之影響。由實驗結果發現當風向平行於開口時,無因次化之通風量不會隨著室外風速及開口面積增加而變化。此外,當風向角為0度及67.5~180度時,兩開口處之壓力係數差異很小,室內之擾動風壓大於兩開口處之壓差,所以室內、外之空氣交換是藉由擾動風壓主導,通風量之預測不能藉由孔口方程式來做預測。當風向角介於22.5~45度時,兩開口處之壓差遠大於室內擾動風壓,所以此情況為兩開口之壓差驅使室內外之空氣流通,因此可代入傳統的孔口方程式來做通風量之預測。除此之外,本研究還有探討室內隔間對建築物之通風影響,由研究結果發現當風向角為0~90度時,有室內隔間之建築物通風量會小於無室內隔間之建築物通風量,通風量之預測可藉由Chu and Wang (2010)的阻抗模式及阻抗因子來做預測。當風向角介於112.5~180度時,通風量將不再受室內隔間牆所影響,換氣量接近無室內隔間牆建築物之換氣量。
摘要(英) This study used wind tunnel experiments to investigate the influence of wind speed, direction and opening size on the wind-driven ventilation with two openings on a single wall. The exchange rates Q across the openings were systemically measured by tracer gas decay method. The experimental results indicate that the dimensionless exchange rate, Q* = Q/UHA, of shear-induced ventilation (wind is parallel to the openings) is independent of the wind speed UH and opening area A. Furthermore, the exchange rate cannot be predicted by the orifice equation when the wind direction equals to 0o and 67.5o~180o, because the time-averaged pressure difference across the opening is close to zero. The fluctuating pressure across the building openings will entrain air across the opening, and the exchange rate is proportional to the root-mean-square of fluctuating pressures. For wind direction equals to 22.5o ~ 45o, since the pressure difference is much larger than fluctuating pressure, the ventilation is dominated by the pressure difference across the openings. In addition, this study also investigates the single-sided ventilation for buildings with internal partition. The exchange rate for building with internal partition is smaller than building without internal partition for wind direction equals to 0o ~ 90o. When wind direction equals to 112.5o ~ 180o, the exchange rate is independent of the internal partition wall. The ventilation rates with the internal plate can be predicted by a modified version of the resistance model of Chu and Wang (2010).
關鍵字(中) ★ 自然通風
★ 風壓通風
★ 單側通風
★ 風洞實驗
★ 示踪劑濃度衰減法
關鍵字(英) ★ Natural ventilation
★ Wind-driven ventilation
★ Single-sided ventilation
★ Wind tunnel experiment
★ Tracer gas technique
論文目次 Abstract i
Contents iii
Notation iv
Figure captions v
Table captions vii
1. Introduction 1
2. Experimental setup 7
3. Results and discussion 10
3.1 Influence of wind speed 10
3.2 Influence of wind direction 13
3.2.1 Single opening ventilation 13
3.2.2 Single-sided ventilation with two openings 14
3.2.3 Pressure coefficient 15
3.3 Influence of internal partition 17
3.4 Influence of opening size 21
4. Conclusions 22
References 24
Figures 26
Tables 57
參考文獻 References
[1] Etheridge D, Sandberg M. Building ventilation: Theory and measurement, John Wiley and Sons, England; 1996.
[2] Linden PF. The fluid mechanics of natural ventilation. Annual Review of Fluid Mechanics 1999; 31: 201-238.
[3] Awbi HB. Ventilation of buildings. 2nd ed. Taylor and Francis; 2003.
[4] Chu CR, Chiu YH, Chen YJ, Wang YW, Chou CP. Turbulence effects on the discharge coefficient and mean flow rate of wind-driven cross ventilation. Building and Environment 2009; 44: 2064-2072.
[5] Heiselberg P, Sandberg M. Evaluation of discharge coefficients for window openings in wind driven natural ventilation. International Journal of Ventilation 2006; 5(1): 43-52.
[6] Warren PR. Ventilation through openings on one wall only, in: C.J. Hoogendorn, N.H. Afgar (eds.), Int. Conf. Heat and Mass Transfer in Buildings, Dubrovnik, Yugoslavia. Energy Conservation in Heating, Cooling and Ventilating Buildings, 1977. Hemisphere, Washington, DC, 1: 189-209.
[7] British Standard 5925. Code of practice for design of buildings: ventilation principles and designing for natural ventilation. London, UK: British Standards Institution; 1980.
[8] Kato S, Kono R, Hasama T, Takahashi T, Ooka R. A wind tunnel experimental analysis of the ventilation characteristics of a room with single-sided opening in uniform flow. Int J of Ventilation 2006; 5 (1): 171-178.
[9] Warren P.R. and Parkins L.M. Single-sided ventilation through open windows. in: Conference Proceedings, Thermal Performance of the Exterior Envelopes of Building, Florida, ASHRAE SP 1985; 49: 209-228.
[10] Larsen TS, Heiselberg P. Single-sided natural ventilation by wind pressure and temperature difference. Energy and Buildings 2008; 40: 1031-1040.
[11] Wang H., Chen Q. A new empirical model for predicting single-sided, wind-driven natural ventilation in buildings. Energy and Buildings 2012; 54: 386-394.
[12] Ji L, Tan H, Kato S, Bu Z, Takahashi T. Wind tunnel investigation on influence of fluctuating wind direction on cross natural ventilation. Building and Environment 2011; 46: 2490-2499.
[13] Νikolopoulos N, Νikolopoulos A, Larsen TS, Nikas K-S P. Experimental and numerical investigation of the tracer gas methodology in the case of a naturally cross-ventilation building. Building and Environment 2012; 56: 379-388.
[14] Hu, CH, Ohba M, Yoshie R, CFD modeling of unsteady cross ventilation flows using LES, J of Wind Eng & Industrial Aerodynamics 2008; 96: 1692-1706.
[15] Chu, CR, Chen RH, Chen JW. A laboratory experiment of shear-induced ventilation. Energy and Buildings 2011; 43(10), 2631-2637.
[16] Chu CR, Chiu YH, Wang YW. An experiment study of wind-driven cross ventilation in partitioned buildings. Energy and Buildings 2010; 42: 667-673.
[17] Etheridge D, Sandberg M. Building ventilation: theory and measurement, John Wiley and Sons, England; 1996.
[18] Dascalaki E, Santamouris M, Argiriou A, Helmis C, Asimakopoulos DN, Papadopoulos K, Soilemes A. On the combination of air velocity and flow measurements in single sided natural ventilation configurations. Energy and Buildings 1996; 24: 155-165.
[19] Gao NP, Niu JL, Perino M, Heiselberg P. The airborne transmission of infection between flats in high-rise residential buildings: Tracer gas simulation. Building and Environment 2008; 43: 1805–1817.
[20] Karava P, Stathopoulos T, Athienitis AK. Airflow assessment in cross-ventilated buildings with operable façade elements. Build Environ 2011; 46(1): 266-79.
[21] Sherman MH. Tracer-gas techniques for measuring ventilation in a single zone, Building and Environment 1990; 25: 365-374.
[22] Bu Z, Kato S, Takahashi T. Wind tunnel experiments of wind-driven natural ventilation rate in residential basements with areaway space. Building and Environment 2010; 45: 2263-2272.
[23] Chu CR, Wang YW. The loss factors of building openings for wind-driven ventilation. Building and Environment 2010; 45(10): 2273-2279.
指導教授 朱佳仁(Chia-ren Chu) 審核日期 2015-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明