以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:89 、訪客IP:3.145.84.16
姓名 趙竑(Hung Zhao) 查詢紙本館藏 畢業系所 大氣物理研究所 論文名稱 利用WRF 3DVAR Hybrid資料同化系統探討GPS掩星觀測對颱風海燕及梅姬模擬之影響 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究主要探討兩個個案,分別為2013年11月3日到11日的颱風海燕(Haiyan)和2010年10月12日到24日的颱風梅姬(Megi),兩個颱風都造成重大災情,因此颱風預報儼然是一個重要的議題。由於傳統觀測資料(GTS)大部分集中陸地,海面上的觀測資料並不多,所以海上觀測通常使用遙測的方式取得,GPSRO掩星觀測就是其中例子。若能將GPSRO觀測資料與數值天氣預報做整合,就有機會得到更準確的預報颱風路徑和強度,就渴望能降低颱風災害。本篇使用WRF Hybrid資料同化系統將觀測資料和數值天氣預報模式做結合,所以透過Hybrid資料同化系統來測試GPSRO掩星觀測和權重選取對颱風預報的影響。
結果顯示,同化GPSRO掩星觀測在模式預報上優於沒同化GPSRO,在同化期間和預報上都有改善,在路徑預報上優勢可持續至少96小時;方均根誤差和空間相關係數驗證上,顯示GPSRO對水氣、熱力和動力場上預報有顯著影響,特別是在高對流層區域,影響力持續72小時。Hybrid資料同化方法對兩個颱風個案預報也有明顯改善,當加入系集背景誤差協方差後,路徑上有明顯接近JTWC最佳路經,使用50%系集背景誤差協方差表現最好;在方均根誤差和空間相關係數的校驗中,當加上系集背景誤差協方差在熱力場預報上比沒加系集背景誤差協方差表現還優異,測試中50 %到75%的系集背景誤差協方差表現最好。另外針對二個個案進行spin-up時間測試,但結果不是非常理想。最後在同化半徑測試裡面,顯示使用800公里的同化半徑在個案預報上表現最佳。
摘要(英) This study focuses on two cases. The first case is Typhoon Haiyan on November 3, 2013, the second one is Typhoon Megi on October 12, 2010. These two typhoons lead to the significant disaster situation, so it is an important subject for the typhoon forecast. Because the traditional observations (Global Telecommunication System) mainly centralize on land, they are not numerous upon the sea. The observations upon the sea is usually obtained by using telemetering. The Global Positioning System Radio Occultation (GPSRO) observation is one of the examples. If we can combine the GPSRO observation with the numerical weather prediction (NWP), we will get the more accurate typhoon track forecast and the intensity, and might reduce more damage. In this study, WRF Hybrid Data Assimilation will be used to combine observations with the numerical weather prediction (NWP). We will use WRF Hybrid Data Assimilation to test GPSRO observation sensitivity and hybrid weighting sensitivity to the typhoon forecasting influence.
The result shows that assimilating GPSRO observation is better results than no assimilating GPSRO observation for these two cases during assimilation. Typhoon track forecast will be available within 96 hrs or so. On verification of the RMSE (Root mean squared error) and SCC (spatial correlation coefficients), the result shows that GPSRO observation significantly influence the water vapor field, the thermodynamic field and the dynamic field about 72 hrs, specially in the upper troposphere. WRF Hybrid Data Assimilation is also significant improvement in these two cases. When we add in ensemble background error covariance, typhoon track forecast will be closer to the JTWC best track, and using 50% ensemble background error covariance is the best for these two cases. After verifying the Rmse (Root mean squared error) and Scc (spatial correlation coefficients) and comparing with and without the ensemble background error covariance, we found that the thermodynamic field with te ensemble background error covariance is better. The result shows that 50% to 75% ensemble background error covariance is better. After the spin-up time testing of other two cases, we found that results are not satisfactory. Last, we did the localization experiment that 800 km radius case showed the best result in forecast performance.
關鍵字(中) ★ 混合資料同化系統
★ 全球定位系統掩星觀測關鍵字(英) 論文目次 目錄
中文摘要 I
英文摘要 II
致謝 IV
目錄 VI
表目錄 VIII
圖目錄 VIII
1-1前言 1
1-2 文獻回顧 2
1-3研究動機 4
第二章、資料來源與研究方法 4
2-1 資料來源 4
2-1-1 NCEP GFS資料 4
2-1-2 ERA-Interim資料 5
2-1-3 FORMOSAT-3 GPSRO掩星觀測資料 5
2-1-4 全球電信系統(Global Telecommunication System)觀測資料 6
2-2 研究方法 7
2-2-1 WRF模式 7
2-2-2 同化系統 7
2-3 驗證方法 11
2-3-1 方均根誤差 (Root mean squared error) 12
2-3-2 空間相關係數 12
2-3-3 系集離散 (Ensemble Spread) 13
第三章、個案介紹與實驗設定 13
3-1 個案介紹 13
3-1-1颱風海燕(2013) 13
3-1-2颱風海燕環境分析 14
3-1-3颱風梅姬(2010) 14
3-1-4颱風梅姬環境分析 15
3-2 模式設定 15
3-3 實驗設計 16
3-3-1 單點實驗測試 16
3-3-2 真實個案實驗 17
第四章、實驗結果 18
4-1 單點測試結果分析 18
4-2 海燕颱風結果分析 19
4-2-1 GPSRO掩星觀測敏感度測試 19
4-2-2 權重敏感度測試 23
4-3 梅姬颱風結果分析 27
4-3-1 GPSRO掩星觀測敏感度測試 27
4-3-2權重敏感度測試 31
4-3-3同化半徑測試 35
第五章、結論與未來展望 36
5-1 結論 36
5-2 未來展望 38
參考文獻 39
附表與附圖 43參考文獻 王潔如,2004:侵台颱風之 GPS 折射率 3DVAR 資料同化及數值模擬。
國立中央大學,大氣物理研究所,碩士論文,108 頁。
吳俊澤,2007年:利用MM5 4DVAR 模式同化掩星折射率資料及虛擬渦旋探
討颱風數值之影響。國立中央大學,大氣物理研究所,碩士論文,
70頁
黃清勇、周濤、郭勉之,2007:GPS 掩星折射率資料同化對於颱風模擬
之影響。 大氣科學,35,135-150
黃清勇、王潔如,2008:衛星遙測資料三維變分同化對於颱風模擬的影
響。大氣科學,36,249-273。
吳家苓,2008年:FORMOSAT-3 GPS RO 觀測資料之校驗及其對東亜地區梅
雨季天氣分析與預報之系統性影響。國立中央大學,大氣物理研究
所,碩士論文,106頁。
陳舒雅,2008年:GPS 掩星觀測資料同化及對區域天氣預報模擬之影響。
國立中央大學,大氣物理研究所,博士論文,154頁。
迮嘉欣,2009:資料同化對臺灣地區颱風和梅雨模擬之影響。國立中央 大學,大氣物理研究所,碩士論文,81 頁。
巫佳玲,2011年:利用WRF 3DVAR 與EAKF 探討GPSRO 資料同化對莫拉克
颱風模擬之影響。國立中央大學,大氣物理研究所,碩士論文,134
頁。
黃振星,2011年:同化FORMOSAT-3/COSMIC 及Follow-on 掩星觀測資料對
颱風預報之影響。國立中央大學,大氣物理研究所,碩士論文,108
頁。
郭閔超,2011:結合 VDRAS、WRF 與雷達網聯資料 以檢視對台灣地區短
期降水預報改善之成效。國立中央大學,大氣物理研究所,碩士論
文71頁。
陳怡孜,2013:GNSS RO 觀測資料對颱風莫拉克預報之影響:觀測系統模
擬實驗。國立中央大學,大氣物理研究所,碩士論文89頁。
陳冠翰,2014: 利用系集卡曼同化和四維變分同化系統探討 GPS 掩 星
觀測對颱風梅姬(2010)模擬之影響。國立中央大學,大氣物理研究
所,碩士論文65頁。
李念青,2014:利用 WRF-FSO 系統探討掩星資料對颱風預報的影響。國
立中央大學,大氣物理研究所,碩士論文64頁。
Anderson, Y.-H. Kuo, C. Snyder, and A Caya, 2008: Evaluation of a nonlocal quasi-
phase observation operator in assimilation of CHAMP radio occultation
refractivity with WRF, Mon. Wea. Rev., 136, 242-256.
Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, Y.-R. Guo and S. Sokolovskiy, 2009: Typhoon
predictions with GPS radio occultation data assimilations by WRF-VAR using
local and nonlocal operators. Terr. Atmos. Oceanic Sci., 20, 133–154
Cucurull, L., Y.-H. Kuo, D. Barker, and S. R. H. Rizvi, 2006: Assessing the impact of
simulated COSMIC GPS radio occultation data on weather analysis over the
Antarctic: A case study. Mon. Wea. Rev., 134, 3283-3296.
Cucurull, L., J.C. Derber, R. Treadon and R.J. Purser, 2007: Assimilation of Global 26
Positioning System radio occultation observations into NCEP’s Global Data
Assimilation System. Mon Wea. Rev., 135, 3174-3193.
Cucurull, L., J.C. Derber, R. Treadon and R.J. Purser, 2008: Preliminary impact studies
using global positioning system radio occultation profiles at NCEP. Mon. Wea.
Rev., 136, 1865-1877.
Huang, C.-Y., Y.-H. Kuo, S.-H. Chen and F. Vandenberghe, 2005: Improvements on t
typhoon forecast with assimilated GPS occultation refractivity. Wea.
Forecasting., 20, 931–953.
Healy S. and J.-N. Thépaut, 2006: Assimilation experiments with CHAMP GPS radio
occultation measurements. Quart. J. Roy. Meteorol. Soc., 132, 605–623. Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos. Sci. Lett., 9, doi:10.1002/asi.169.
Kueh, M.-T., C.-Y. Huang, S.-Y. Chen, S.-H. Chen and C.-J. Wang 2008: Impact of GPS
27 radio occultation soundings on prediction of Typhoon Bilis (2006)
landfalling Taiwan. Terr. Atmos. Oceanic Sci., 20, 115–131.
Kuo, Y.-H., X. Zou, S.-J. Chen, Y.-R. Guo, W. Huang, R. Anthes, D. Hunt, M. Exner, C.
Rocken, S. Sokilovskiy, 1998: A GPS/MET sounding through an intense upper-
level front, Bull. Amer. Met. Soc., 79, 617-626.
Liu, H., J. L. Anderson, Y.-H. Kuo, and K. Raeder, 2007: Importance offorecast error
multivariate correlations in idealized assimilation of GPS radio occultation data
with the Ensemble Adjustment filter, Mon. Wea. Rev., 135, 173-185. Liu, H., J. L.
Ware, R. et al., 1996: GPS sounding of the atmosphere from low eatth orbit:
preliminary results. Bull. Amer. Meteor. Soc., 77, 19-40.
Wee, T.-K., Y.-H. Kuo, D. H. Bromwich, A. J. Monaghan, 2008: Assimilation of GPS
Radio Occultation Refractivity Data from CHAMP and SAC-C Missions over High
Southern Latitudes with MM5 4DVAR. Mon. Wea. Rev., 136, 2923–2944.
Thomas M. Hamill and Chris Snyder, 2000: A Hybrid Ensemble Kalman Filter–3D
Variational Analysis Scheme. Mon. Wea. Rev., 128, 2905–2919
Xuguang Wang, Dale M. Barker, Chris Snyder, and Thomas M. Hamill, 2008: A Hybrid
ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing
System Simulation Experiment. Mon. Wea. Rev., 136, 5116–5131.
Zaizhong Ma, Ying-Hwa Kuo, Bin Wang, Wan-Shu Wu, and Sergey Sokolovskiy, 2009:
Comparison of Local and Nonlocal Observation Operators for the Assimilation of
GPS RO Data with the NCEP GSI System: An OSSE Study. Mon. Wea. Rev., 137,
3575–3587.
Zou, X., Y.-H. Kuo, and Y.-R. Guo, 1995: Assimilation of atmospheric radio 36
refractivity using a nonhydrostatic adjoint model. Mon. Wea. Rev., 123, 2229-
2249.
指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2015-8-4 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare