博碩士論文 102621017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:146 、訪客IP:3.146.178.174
姓名 黃昭銘(Chao-ming Huang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 應用GSMaP衛星資料分析雙眼牆颱風的結構變化與降雨強度之關係
相關論文
★ 應用SSM/I衛星資料於西太平洋颱風特性之分析★ 應用衛星資料於熱帶氣旋之環境場分析
★ 衛星資料反演海氣參數及其在梅雨期海上中尺度對流系統生成發展之應用★ 應用SSM/I衛星資料分析桃芝與納莉颱風之降雨及海氣參數的變化
★ 利用Spot 4衛星的Vegetation資料比較NDVI, ARVI, 及AFRI植被指數與氣溶膠厚度之關係★ 應用衛星資料分析颱風降雨與颱風強度變化之關係
★ 應用SSM/I衛星資料於颱風中心定位及最大風速估算★ 應用衛星資料分析海氣參數與颱風強度變化之關係
★ MODIS在生質燃燒監測之應用研究★ 應用SSM/I衛星觀測資料估算颱風定量降水
★ AMSU衛星資料反演大氣溫濕剖面及其在颱風強度估算上之應用★ 利用HHT之EMD方法分析SSM/I資料估算之客觀指數與颱風強度年際變化關係
★ 模式和SSM/I客觀潛力指數在中尺度對流系統預報上之應用★ SSM/I衛星資料估算之客觀潛力指數與颱風強度變化之關係
★ 應用SSM/I衛星資料分析颱風形成之激發機制★ 衛星資料估算颱風旋轉及強度變化在熱帶氣旋定量降雨預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙眼牆結構多出現於強度較高的颱風,相較於一般颱風結構,雙眼牆結構是由眼牆外再發展出一環狀強對流帶,產生第二眼牆,近颱風中心的眼牆為內眼牆,較遠的第二眼牆則為外眼牆,外眼牆與內眼牆之間有一對流極小的區域moat,且眼牆彼此同心,故又稱同心眼牆(Concentric Eyewall)。Willoughby et al. (1982) 提出眼牆置換週期(Eyewall Replacement Cycle)論述,多數雙眼牆結構形成後,外眼牆逐漸增強,位置逐漸內縮,內眼牆則是逐漸減弱並隨著外眼牆內縮而消散。

為了研究西北太平洋雙眼牆颱風眼牆置換過程與颱風整體平均降雨強度之關係,本文利用蕭(2013)的方法以及GSMaP(Global Satellite Mapping of Precipitation)高解析度資料取得內外眼牆強度與颱風整體平均降雨強度之時序變化發現雙眼牆颱風整體平均降雨強度不一定會同時受到內外眼牆強度改變而有很大的影響,依照眼牆對於颱風整體平均降雨強度的影響程度來看可將雙眼牆颱風個案分成三個類別: 內眼牆、外眼牆、內外眼牆主導降水強度。

內眼牆主導降水強度個案的颱風整體平均降雨強度與內眼牆強度變化有相似的趨勢,儘管外眼牆強度增強,總雨量仍沒有提升的現象發生;外眼牆主導降水強度個案的降雨強度則是與外眼牆強度變化有相似的趨勢,當內眼牆逐漸減弱消散時,颱風整體平均降雨強度仍然有維持或是有上升的趨勢;內外眼牆主導降水強度個案,其颱風整體平均降雨強度會同時受到內外眼牆變化影響。 如果可以掌握雙眼牆颱風類別即可進一步推估颱風整體平均降雨強度趨勢,而造成不同眼牆主導颱風整體平均降雨強度的原因則仍需要進一步的分析。

摘要(英) Strong typhoons usually have double eyewall structure. Comparing with normal typhoons, double eyewall typhoons have an inner eyewall and outer eyewall separated by the moat which is convective minimum region. Because inner eyewall and outer eyewall both surround the center of typhoon, this structure also called Concentric Eyewall (CE). Willoughby et al. (1982) indicated the eyewall replacement cycle dynamics. Radius outer eyewall contract and increase intensity. Conversely, radius inner eyewall decreased intensity. Finally, the inner eyewall dissipate and replaced by the outer eyewall.

For studying the relationship of western North Pacific typhoons′ eyewall replacement cycle and total average rainfall rate, this work adopt the method of Hsiao (2013) and GSMaP (Global Satellite Mapping of Precipitation) data which has high spatial and temporal resolution. The result appear that not both inner eyewall and outer eyewall affect CE typhoons′ total average rainfall rate strongly. Depending on influence of inner eyewall and outer eyewall, the three types of CE typhoons has been set: inner eyewall domination, outer eyewall domination and both eyewall domination.

The cases of inner eyewall domination which typhoons′ total average rainfall rate has similar tendency change with inner eyewall′s rainfall rate intensity. Despite the rainfall rate intensity of outer eyewall enhanced, typhoons′ total average rainfall rate doesn′t be enhanced; the cases of outer eyewall domination which typhoons′ total average rainfall rate has similar tendency change with outer eyewall′s rainfall rate intensity. When the rainfall rate intensity of inner eyewall dissipate, typhoons′ total average rainfall rate still maintain or even enhance intensity; the both eyewall of inner eyewall domination which typhoons′ total average rainfall rate will be affected by both inner eyewall and outer eyewall obviously.

If the type of CE typhoons can be known previously, we can forecast tendency change of typhoons′ total average rainfall rate. The reason for causing different eyewall dominate typhoons′ total average rainfall rate is still needed to be investigated.

關鍵字(中) ★ 雙眼牆颱風
★ 眼牆置換週期
★ GSMaP
★ 颱風整體平均降雨強度
關鍵字(英) ★ Concentric Eyewall Typhoon
★ Eyewall Replacement Cycle
★ GSMaP
★ Total Average Rainfall Rate of Typhoon
論文目次 摘要........................................................I

Abstract..................................................III

致謝.......................................................IV

目錄........................................................V

圖目錄....................................................VII

表目錄......................................................X

第一章 緒論............................................1

1.1 前言................................................1

1.2 文獻回顧............................................2

1.3 研究目的............................................6

第二章 資料來源........................................7

2.1 GSMaP-MVK...........................................7

2.2 JTWC最佳路徑.......................................12

2.3 西北太平洋雙眼牆颱風資料庫……………………………….13

第三章 研究方法………………………………………………….14

3.1 颱風中心定位………………………………………………….14

3.2 定義眼牆位置………………………………………………….16

3.2.1 眼牆結構代表性限制…………………………………16

3.2.2 眼牆結構的封閉性和軸對稱性限制…………………18

3.2.3 設定眼牆結構代表性和結構對稱性限制的閾值……21

3.3 分析眼牆降雨強度…………………………………………….23

3.4 颱風整體平均降雨強度……………………………………….25

第四章 結果分析………………………………………………….26

4.1 外眼牆主導降水強度………………………………………….26

4.1.1 2000颱風Saomai………………………………………26

4.1.2 2007颱風Sepat……………………………………….28

4.2 內眼牆主導降水強度………………………………………….29

4.2.1 2004颱風Dianmu………………………………………29

4.2.2 2009颱風Nida…………………………………………30

4.3 內外眼牆主導降水強度……………………………………….31

4.3.1 2005颱風Talim……………………………………….32

4.3.2 2005颱風Haitang…………………………………….33

第五章 結論與展望……………………………………………….35

參考文獻………………………………………………………………….38

附圖……………………………………………………………………….42

附表……………………………………………………………………….66

參考文獻 范振原,2004:應用SSM/I 衛星資料於颱風中心定位及最大風速估算。國立中央大學大氣物理研究所碩士論文。

郭家利,2001:應用衛星資料於熱帶氣旋之環境場分析。國立中央大學大氣物理研究所碩士論文。

曾千祐,2010:應用衛星觀測資料估算之熱能及渦度參數建立西北太平洋熱帶氣旋生成之指標。國立中央大學大氣物理研究所碩士論文。

蕭靖謀,2013:應用衛星資料估算之海上降水型態分析雙眼牆颱風的結構與強度變化。國立中央大學大氣物理研究所碩士論文。

Aonashi, K., J. Awaka, M. Hirose, T. Kozu, T. Kubota, G. Liu, S. Shige, S. Kida, S. Seto, N. Takahashi, and Y. N. Takayabu, 2009: GSMaP passive, microwave precipitation retrieval algorithm: Algorithm description and validation. J. Meteor. Soc. Japan, 87A, 119-136

Camp, J. P., and M. T. Montgomery, 2001: Hurricane maximum intensity: Past and present. Mon. Weather Rev.129, 1704 – 1717.

Didlake, A. C., R. A. Houze, 2011: Kinematics of the Secondary Eyewall Observed in Hurricane Rita (2005). J. Atmos. Sci. 68, 1620–1636.

Hawkins, H. F. 1983: Hurricane Allen and island obstacles. J. Atmos. Sci.40, 1360 – 1361.

Hawkins, J. D., and M. Helveston, 2004: Tropical cyclone multiple eyewall characteristics. Preprints, 26th Conf. on Hurricane and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc. 276–277.

Joyce, R., J. E. Janowiak, and G. J. Huffman, 2001: Latitudinally and seasonally dependent zenithangle corrections for geostationary satellite IR brightness temperatures. J. Appl. Meteor, 40, 689–703.

Kossin, J. P., and M. Sitkowski, 2012: Predicting Hurricane Intensity and Structure Changes Associated with Eyewall Replacement Cycles. Wea. Forecasting, 27, 484–488.

Kuo, H.-C. L.-Y. Lin, C.-P. Chang, and R. T. Williams, 2004: The formation of concentric vorticity structures in typhoons. J. Atmos. Sci.61, 2722 –2734.

——, C.-P. Chang, Y.-T. Yang, H.-J. Jiang, 2009: Western North Pacific Typhoons with Concentric Eyewalls. Mon. Wea. Rev.137, 3758–3770.

Kubota, T., S. Shige, H. Hashizume, K. Aonashi, N. Takahashi, S. Seto, M. Hirose, Y. N. Takayabu, K. Nakagawa, K. Iwanami, T. Ushio, M. Kachi, and K. Okamoto, 2007:Global Precipitation Map using Satelliteborne Microwave Radiometers by the GSMaP Project : Production and Validation, IEEE Trans. Geosci. Remote Sens., 45, No. 7, pp.2259-2275.

Molinari J., and S. Skubis, 1985: Evolution of the surface wind field in an intensifying tropical cyclone. J. Atmos. Sci.42, 2856 – 2879.

Molinari J., and D. Vallaro, 1989: External influences on hurricane intensity. Part I: Outflow layer eddy angular momentum fluxes, J. Atmos. Sci.46, 1093 – 1105.

Montgomery M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby waves and its application to spiral bands and intensity changes in hurricanes, Q. J. R. Meteorol. Soc.123, 435 – 465.

Nong, S., and K. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. Q. J. R. Meteorol. Soc.129, 3323 –3338.

Qiu, X., Z.-M. Tan, and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall formation. Mon. Wea. Rev.138, 2092–2109.

Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev.139, 3829–3847.

Terwey, W. D., and M. T. Montgomery, 2003: Vortex waves and evolution in sharp vorticity gradient vortices, Colorado State University Bluebook #734, 97 pp.

Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics modeled hurricanes. J. Geophys. Res.113, D12112, doi:10.1029/2007JD008897.

Ushio, T., T. Kubota, S. Shige, K. Okamoto, K. Aonashi, T. Inoue, N. Takahashi, T. Iguchi, M. Kachi, R. Oki, T. Morimoto, and Z. Kawasaki, 2009: A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. J. Meteor. Soc. Japan, 87A, 137-151.

Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric Eye Walls, Secondary Wind Maxima, and The Evolution of the Hurricane vortex. J. Atmos. Sci. 39, 395–411.

Willoughby, H. E., H.-L. Jin, S. J. Lord, and J. M. Piotrowicz, 1984: Hurricane structure and evolution as simulated by an axisymmetric. nonhydrostatic numerical model, J. Atmos. Sci.41, 1169 – 1186.

Wimmers, A. J.,and Christopher S. V., 2010: Objectively Determining the Rotational Center of Tropical Cyclones in Passive Microwave Satellite Imagery. J. Appl. Meteor. Climatol., 49, 2013–2034.

Yang, Y., H. Kuo, E. Hendricks, and M. Peng, 2013: Structural and Intensity Changes of Concentric Eyewall Typhoons in the Western North Pacific Basin. Mon. Wea. Rev. doi:10.1175/MWR-D-12-00251.1, in press.

Zhou, X., and B. Wang, 2009: From concentric eyewall to annular

hurricane: A numerical study with the cloud-resolving WRF model.

Geophys. Res. Lett., 36, L03802, doi:10.1029/2008GL036854.





指導教授 劉振榮(Gin-rong Liu) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明