博碩士論文 101327020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.227.105.140
姓名 游振廷(ZHEN-TING YOU)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 光機整合分析應用於620mm反射鏡變形分析與八吋反射鏡彈性膠緊固設計
(Applying Integrated optomechanical analysis to the Deformation of a 620mm Collimator Mirror and Elastometric Mount Design of an 8-Inch Mirror)
相關論文
★ 光學遮斷式晶圓定位系統與半導體製程設備之整合★ 應用於太陽能聚光器之等光路型與金字塔型二次光學元件的分析與比較
★ 口徑550 mm反射鏡減重與撓性支撐結構最佳化設計★ 具線性齒頂修整之螺旋齒輪接觸特性研究
★ 應用投射疊紋技術於齒輪精度量測★ 反射鏡減重與撓性支撐結構最佳化
★ 曲面反射鏡減重與背向支撐撓性機構最佳化★ 建構拉焊機感測系統之人機介面與機器學習
★ 考量成像品質之最佳化塑膠透鏡結構設計★ 離軸矩形反射鏡輕量化與撓性支撐結構最佳化
★ 電路板拉焊製程參數優化與 烙鐵頭剩餘使用壽命預測之研究★ ZK型雙包絡蝸桿蝸輪組接觸分析
★ 整合深度學習與立體視覺之六軸機械手臂夾取系統開發★ 整合光源控制與深度學習辨識之平放膠體散料夾取系統開發
★ 整合視覺及力量控制之六軸機械手臂系統開發★ 平板式太陽能菲涅爾集光透鏡與二次光學元件之設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文針對兩種反射鏡變形進行光機整合分析,前半部為口徑620mm Zerodur準直儀反射鏡變形分析,旨在探討支撐與調整機構對鏡面變形產生的影響。主鏡的材料種類、減重結構形式、支撐與組裝方式等因素會影響主鏡成像品質,本研究利用有限元素法,通過改變邊界條件與支撐位置貼近真實工作情形,再利用調整螺絲對主鏡自重變形進行改善,最後得到最佳調整結果。第二部分則利用相同光機分析流程,對八吋反射鏡片以RTV(Room temperature culcanizing)膠合固定方式進行模擬,從溫度、膠黏面積與共振頻率等方面進行探討,最後串聯最佳化軟體找出最佳膠合厚度。實驗方面則利用最佳化設計的膠合模型,設計相對應的灌膠輔助治具完成六片式分散式膠合,並且藉由環境溫度的改變,驗證膠合固定對鏡面的影響,同時以干涉儀進行量測。
一般光學分析不易計算鏡面受力變形對光學品質所產生的結果,本研究建立一套光機分析的流程,使用自行撰寫光機轉換程式,整合有限元素法與Zernike多項式曲面擬合,能將鏡面變形之節點資料匯入程式中進行分析,結合模擬在結構變形上的預測,進而觀察對光學層面上的影響,以利後續光學機構設計目的使用。
摘要(英) This article builds an opto-mechanical analysis process based on finite element analysis and optimization. The deformation and stress of mirror caused by supporting and adhesives were discussed in this study. A 620 mm collimator mirror made of Zerodur was analyzed to obtain the deformation induced by gravity. The lightweighting structure and supporting structure of mirror also affect the optical quality. The best performance of the collimator mirror was investigated through several analysis under different boundary conditions, supporting positions of the inner ring and the adjustment actuators. The data of deformation of the mirror was obtained by using finite element analysis, Zernike polynomial was also adopted to fit the optical surface to calculate the corresponding aberrations by using opto-mechnacal analysis program. On the other hand, selecting the proper thickness of RTV elastomer is critical to minimize the effect of geometry, structure and thermal variation. Eventually, the best thickness of RTV elastomer was found by using optimization algorithm connected to finite element analysis.
關鍵字(中) ★ 光機整合分析
★ 有限元素分析
★ 鏡面變形
★ 彈性膠
★ 絕熱設計
★ 最佳化
關鍵字(英) ★ Optomechancal analysis
★ Finite element analysis
★ Surface deformation
★ Elastomer
★ Athermal design
★ Optimization
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
一、緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 反射鏡支撐與固定方式 2
1-2-2 反射鏡面變形分析 5
1-2-3 RTV膠合固定與絕熱厚度設計分析 7
1-3 研究目的與動機 10
二、基礎理論 11
2-1 初階像差介紹[27] 11
2-1-1 球面像差(Spherical aberration) 12
2-1-2 彗星像差(Coma) 12
2-1-3 像散(Astigmatism) 13
2-1-4 場曲(Field curvature) 13
2-1-5 畸變(Distortion) 14
2-2 實驗用干涉儀介紹 14
2-3 實驗用波前感測器介紹 16
2-4 光機轉換程式 16
2-4-1 光學曲面變形分析 17
2-4-2 Zernike多項式擬合 20
2-4-3 Zernike多項式係數[13] 22
2-4-4 曲面節點誤差分析結果與討論 22
2-5 RTV膠合設計分析 24
三、準直儀反射鏡模擬分析 27
3-1 研究流程與架構 27
3-2 模型幾何外型與材料性質 28
3-3 有限元素模擬 31
3-3-1 邊界條件 31
3-3-2 內環支撐 33
3-3-3 網格設定 34
3-4 自重變形分析結果與討論 36
3-5 調整機構模擬與分析 40
3-5-1 調整螺絲位置分布與前進位移關係 41
3-5-2 反射鏡自重變形模擬與量測結果比較 43
3-5-3 反射鏡自重變形模擬與量測最佳調整分析結果 45
3-6結果與討論 49
四、八吋反射鏡膠合固定分析 50
4-1 研究流程與架構 50
4-2 模型幾何外型與材料性質 51
4-3 有限元素模擬 52
4-3-1 邊界條件與膠黏方式 52
4-3-2 膠黏厚度對鏡面影響模擬分析 54
4-3-2 重力與溫度個別影響 58
4-3-3 最小膠黏面積分析 63
4-4 膠合最佳化設計 65
4-4-1 膠黏面積與厚度最佳化 66
4-4-2 灌膠輔助治具設計 67
4-4-3 灌膠流程 68
4-5 實驗架構 75
4-6 實驗量測結果比較 76
4-6-1 膠合固定方式實驗量測結果 76
4-6-2 彈片(Clip)固定方式實驗量測結果 80
4-7 結果與討論 84
五、結論與未來工作 85
5-1 結論 85
5-2 未來工作 86
參考文獻 87
附錄 91
附錄A 支撐位置與應力變形與像差分布圖 91
附錄B 調整螺絲旋轉度數與應力、像差關係圖 101
附錄C 膠合厚度對鏡面影響分析 106
附錄D 膠合面積對鏡面影響分析 121
附錄E 溫度與重力個別分析-六片式分散式膠合 122
附錄F 灌膠輔助治具與Mount設計 135
附錄G 灌膠過程照片 137
附錄H 實驗架設照片 143
附錄I 膠合溫度實驗量測結果 144
附錄J 光機轉換程式與現行商業軟體比較 148
參考文獻 [1] H. S. Yang , et al., “Development of Cassegrain type 0.9-m collimator”, Proc. SPIE 5869,Optical Manufacturing and Testing VI, 586913,August 18, 2005.
[2] D. Vukobratovich and R.M. Richard, “Flexure mounts for high-resolution optical elements”, Opto-mechanical and Electro-Optical Design of Industrial Systems, Proc. SPIE 0959, 1988.
[3] P. R. Yoder, Jr, Opto-Mechanical Systems Design, 3rd, Taylor & Francis Group, LLC, pp. 481-525, 2006.
[4] 彭揚林等,「大口徑空間反射鏡高精度面形檢測的支撐技術研究」,應用光學,Vol.32,No.6,2011年11月。
[5] 吳清文等,「 自重作用下中心支撐主反射鏡面形變化研究」, 光學精密工程,Vol.4,No.4,1996年8月。
[6] J. Chen, The Principles of Astronomical Telescope Design, Springer Science Business Media, LLC, pp. 126-160, 2009.
[7] D. Vukobratovich and J. P. Schaefer, “Large stable aluminum optic for aerospace applications”, Proc. SPIE 8125, 2011.
[8] M. Y. Wu and Y.C. Li,” Finite element analysis of large mirror based contact theory”, pp 4964-4966, Mechanic Automation and Control Engineering (MACE), Second International Conference on 2011.
[9] W. B. Xu , et al., ”Opto-mechanical analysis and structure optimization of infrared Cassegrain optical system”, Infrared and Laser Engineering, Vol.41 No.7, Jul. 2012
[10] V. N. Mahajan, Aberration theory made simple, 2nd , SPIE, 2011.
[11] B. Z. Shan, ”Zernike polynomial fitting method and its application”, Optics and Precision Engineering, Vol.10, No.3, pp. 318-323, June, 2002.
[12] G. M. Dai, Wavefront optics for vision correction, SPIE, 2008.
[13] J. Y. Wang and D. E. Silva,” Wave-front interpretation with Zernike polynomials”, Applied Optics, Vol. 19, Issue 9, pp. 1510-1518, 1980.
[14] V. Genberg, et al, “Opto-mechanical analysis of segmented/adaptive optics”, Proc. SPIE 4444, Optomechanical Design and Engineering 2001, November , 2001.
[15] V. Genberg, et al, “Making mechanical FEA results useful in optical design”, Proc. SPIE 4769, Optical Design and Analysis Software II, September, 2002.
[16] P. A. Coronado and R. C. Juergens, “Transferring FEA results to optics codes with Zernikes: A review of techniques”, Proc. SPIE, 5176, 2003.
[17] R. C. Juergens and P. A. Coronado, “Improved method for transfer of FEA results to optical codes”, Proc. SPIE 5174, 2003.
[18] C. Y. Chan, et al., “Design and analysis of isostatic mounts on a spaceborne lightweight primary mirror”, Proc. SPIE 8836, Optomechanical Engineering 2013, 88360K, September, 2013.
[19] J. H. Clark, et al., “Mount-induced deflections in eight-inch flat mirrors at the Navy Prototype Optical Interferometer”, Proc. of SPIE Vol. 7013, 70133K, 2008.
[20] J. H. Clark, et al., “Mirror deformation versus contact area in mounted flat mirrors”, Proc. of SPIE Vol. 7424, 74240 C, 2009.
[21] H. Kaneda, et al., “Cryogenic optical testing of an 800 mm lightweight C/SiC composite mirror mounted on a C/SiC optical bench”, Applied Optics ,Vol. 49, No. 20 , July, 2010.
[22] K. B. Doyle, et al., Integrated Optomechanical Analysis, 2nd, SPIE, pp.147-160, November, 2012.
[23] A. E. Hatheway, “Analysis of adhesive bonds in optics”, Proc. SPIE. Optomechanical Design, September, 1993.
[24] K. B. Doyle, “Athermal design of nearly incompressible bonds”, Proc. SPIE Vol. 4771, p. 296-303, Optomechanical Design and Engineering, 2002.
[25] V. M. Ryaboy, “Analysis of thermal stress and deformation in elastically bonded optics”, Proc. of SPIE Vol. 6665, 66650K, 2007.
[26] H. Kihm, et al., “Athermal Elastomeric Lens Mount for Space Optics”, Journal of the Optical Society of Korea, Vol.13, No.2, pp. 201-205, June, 2009.
[27] V. N. Mahajan, Optical Imaging and Aberrations, SPIE, 1998.
[28] 網路資料,http://www.dcfever.com/news/viewglossary.php?glossary_id=47
[29] 謝宏榮與吳昇栓,「像差之研究」,China Institute of Technology,Vol.37,2007年12月。
[30] 網路資料,http://zh.wikipedia.org/wiki/%E7%95%B8%E8%AE%8A
[31] 網路資料,http://www.kinori.com/eng/optical/optics.htm
[32] Engineering Synthesis Design, Inc., Intellium H2000 Overview, Engineering Synthesis Design, Inc., U.S.A., 2010.
[33] H. Z. Li, et al., “Application of Shack-Hartmann wavefront sensor in optical testing”, Journal of Applied Optics, Vol.3,No.1, January, 2012.
[34] V.Genberg and G. Michels, “Orthogonality of Zernike Polynomials”, Proc. SPIE 4771, Optomechanical Design and Engineering, 2002.
[35] K. Schwertz and J. H. Burge, Field Guide to Optomechanical Design and Analysis, SPIE, pp. 54-56, 2012.
[36] M. Bayar, “Lens Barrel Optomechanical Design Principles”, Opt. Eng. 20(2), 202181, April, 1981.
[37] J. J. Herbert, “Techniques for deriving optimal bondlines for athermal bonded mounts”, Proc. SPIE 6288, Current Developments in Lens Design and Optical Engineering VII, 62880J, August, 2006.
[38] P. R. Yoder, Jr., Mounting Optics in Optical Instruments, SPIE, pp.275-277, 2008.
[39] Yoder, P.R., Jr., “Design guidelines for bonding prisms to mounts”, Proceedings of SPIE 1013, 1988.
[40] Schott AG, Thermal expansion of zerodur,TIE-37, August, 2006.
[41] Schott AG, Zerodur lightweighting,TIE-38, March, 2008.
[42] Schott AG, Zerodur processing,TIE-44, January, 2009.
[43] H. M. Martin, et al., “Active supports and force optimization for the MMT primary mirror”, Proc. SPIE 3352, Advanced Technology Optical/IR Telescopes VI, August , 1998.
[44] P. Yao, et al.,” Performance study of a 1.2 m active mirror”, Proc. SPIE. 7654, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, 765417, May, 2010.
[45] Y. Zhao, et al.,” A support method of large aperture light weighted primary mirror manufacturing and testing”, Proc. SPIE 7654, 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, 76541M , October, 2010.
[46] P. Mammini, et al., “Sensitivity Evaluation of Mounting Optics Using Elastomer and Bipod Flexures”, Proc. SPIE, 5176, pp. 26-35, 2003.
[47] Schott AG, Borofloat ®33.
[48] SmartDO最佳化設計軟體,http://www.fea-optimization.com/SmartDO/index_c.htm
[49] A. Ahmad, Handbook of Optomechanical Engineering, CRC Press, pp. 45-62, 1996.
[50] Momentive,RTV566 Technical Data Sheet, May, 2015.
[51] SigFit is a proprietary product of Sigmadyne, Inc, Rochester, NY
指導教授 陳怡呈(YI-CHENG CHEN) 審核日期 2015-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明