博碩士論文 101328009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.137.198.239
姓名 許嘉顯(Chia-hsien Hsu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 磁場對多電極電解水產氫之影響
(The influence of magnetic field on the hydrogen production by multi-electrode water electrolysis)
相關論文
★ 金屬粉末射出成型毛細吸附脫脂模擬★ 燃料電池複合式流道設計與膜電極組製程
★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究
★ 電解水產氫之電解液流場效應分析★ 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究
★ 高溫高壓之電解水產氫效率分析★ 超音波場下電解水產氫之效應分析
★ 以化學水浴法製備氧化鋅光電極薄膜之研究★ 以化學浴沉積法製備四元化合物光電極薄膜之研究
★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究
★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究★ 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究
★ 電解水產氫中極化作用之分析與研究★ 磁場對水電解產氫效率增益之機制研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗利用多組鎳電極,於氫氧化鉀電解液,進行水電解產氫,由恆電位儀、氣體質量流量計、高速攝影機與相機記錄所得到的數據資料,探討不同電壓值、電極間距與組數、電解液濃度,在加入磁場後,受到磁流體動力學(MHD)中勞侖茲力(Lorentz force)之影響,使電流值提升促進電解,而氣體產量皆會增加,並且使氣泡流場平均分散,降低阻抗促進電解反應。
恆電位儀搭配氣體流量計加入磁場後,在電極間距3mm,濃度25wt%,電壓3V時有最大體積流率為3.6 l/hr。再藉由電化學電解之觀念計算加磁場後產氣增加率、電功率增加率與能量效率,在電極間距3mm,電壓2.5V,單一電極組有最大產氣增加率為13.4%,電功率增加率為10.2%,在多電極組的能量效率皆有不錯的效果,在電極間距3mm,電壓2.5V,1組有最大值為92.14%。
關鍵字: 電解水、勞侖茲力、磁流體動力學(MHD) 、多電極
摘要(英) Multiple sets of nickel electrode were used in an electrolyte of potassium hydroxide to perform water electrolysis hydrogen production, Effects of different parameters, such as applied voltage, inter-electrode distance, number of electrode groups and concentration of electrolyte on the water electrolysis are investigated by the use of potentiostat, mass flow meter, high-speed camera.
By the adding of the magnetic field, the resulting Lorentz force will produce magnetohydrodynamic (MHD) convection and promotes electrolysis with more gas production. Gas bubbles disperse averagely in the electrolyte and the impedance is thus reduced. The maximum flow rate of 3.6 l / hr occurs as inter-electrode distance of 3mm, concentration of 25 wt%, and applied voltage of 3V with the addition of magnetic field. The increase of gas production rate, the increase of electric power rate, and the energy efficiency as the magnetic field is added are also estimated. With the addition of magnetic field, the maximum gas production rate is about 13.4%, electric power rate about 10.2%, and energy efficiency about 92.14%, for the single electrode group under parameters of inter-electrode distance 3mm, and applied voltage 2.5V. For multi-electrode groups, the gas production is increased, and the corresponding energy efficiency is slightly reduced only. It shows that the multi-electrode groups can be applied for the mass production of hydrogen.
Key words: Water electrolysis;Lorenz force;Magnetohydrodynamic (MHD);multi-electrode
關鍵字(中) ★ 電解水
★ 勞侖茲力
★ 磁流體動力學
★ 多電極
關鍵字(英) ★ Water electrolysis
★ Lorenz force
★ Magnetohydrodynamic(MHD)
★ multi-electrode
論文目次 摘要 I
ABSTRACT II
目錄 IV
表目錄 VIII
圖目錄 IX
符號說明 XII
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究目的與動機 5
第二章 理論基礎 7
2-1電解水產氫之基本原理 7
2-2電解電壓 8
2-3法拉第電解定律 9
2-4吉布斯自由能 10
2-5極化作用 11
2-5-1濃度極化 11
2-5-2活性極化 12
2-5-3歐姆極化 13
2-6勞侖茲力 14
2-7電極之磁化效應 14
2-8導電度 16
2-9燃料熱值 16
2-10效率 17
2-10-1電流 17
2-10-2氫氣熱值 18
2-10-3電功率 18
第三章 實驗裝置 20
3-1實驗用品 20
3-1-1實驗藥品 20
3-1-2實驗材料 20
3-2實驗儀器 21
3-2-1恆電位儀 22
3-2-2溫度量測器 22
3-2-3磁石攪拌器 22
3-2-4氣體質量流量計 22
3-2-5直流電源供應器 23
3-2-6燈具 23
3-2-7高速攝影機 24
3-2-8鏡頭 24
3-3實驗架設 24
3-4實驗變數 25
3-5實驗步驟 25
3-5-1恆電位儀量測 25
3-5-2高速攝影機與相機拍攝 26
第四章 結果與討論 27
4-1工作參數對產氫量之影響 28
4-1-1體積流率 28
4-1-2 氣泡流場之觀察 30
4-2工作參數對產氫效率之影響 32
4-2-1流率差值之影響 33
4-2-2產氣增加率之影響 33
4-2-3電功率增加率之影響 34
4-2-4絕對效率之影響 35
第五章 結論與未來展望 37
5-1結論 37
5-2未來展望 37
參考文獻 39
表 43
圖 47
參考文獻 [1]科學發展2006年3月,399期,68~75頁。
[2]陳維新著,能源概論第八版,高立出版社(2015)。
[3]D. Lj. Stojić, M. P. Marčeta, S. P. Sovilj and Š. S. Miljanić, “Hydrogen generation from water electrolysis – possibilities of energy saving,” International Journal of Power Sources, Vol.118, pp.315-319(2003).
[4]N. Nagai, M. Takeuchi, T. Kimura and T. Oka, ”Existence of optimum space between electrodes on hydrogen production by water electrolysis”, International Journal of Hydrogen Energy, Vol. 28, pp. 35-41(2003).
[5]S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umno and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,” International Journal of hydrogen Energy, Vol.26, pp.653-659(2001).
[6]R. F. de Souza, J. C. Padilha, R. S. Gonçalves and J. Rault-Berthelot, “Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications,Vol.8, pp.211-216(2006).
[7]M. P. M. Kaninski, D. P. Saponjic, V. M.Nikolic, D. L. Zugic, and G. S. Tasic, “Energy consumption and stability of the Ni-Mo electrodes for the alkaline hydrogen production at industrial conditions,” International Journal of hydrogen energy,Vol.36,pp.8864-8868(2011).
[8]V. M. Nikolic, G. S. Tasic, A. D. Maksic , D. P. Saponjic , S. M. Miulovic , and M. P. Marceta Kaninski, “Raising efficiency of hydrogen generation from alkaline water electrolysis - Energy saving,” Int J Hydrogen Energy, Vol 35,pp. 12369-12373, (2010).
[9]S. A. Grigoriev, P. Millet, S. V. Korobtsev, V. I. Porembskiy, M. Pepic, C. Etievant, C. Puyenchet and V. N. Fateev, “Hydrogen safety aspects related to high-pressure polymer electrolyte membrane water electrolysis,” International Journal of Hydrogen Energy, Vol.34, pp.5986-5991(2009).
[10]F. Marangio and M. Santarelli, and M. Cali, “Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production,” International Journal of Hydrogen Energy, Vol. 34, pp. 1143-1158.(2009).
[11]S. D. Li, C. C. Wang and C. Y. Chen, “Water electrolysis in the presence of an ultrasonic field,” Electrochimica Acta, Vol.54, pp. 3877-3883(2009).
[12]H. Matsushima, Y. Fukunaka and K. Kuribayashi, “Water electrolysis under microgravity: Part II. Description of gas bubble evolution phenomena,” Electrochimica Acta, Vol.51, pp.4190-4198(2006).
[13]M. Wang, Z. Wang and Z. Guo, “Water electrolysis enhanced by super gravity field for hydrogen production,” International Journal of Hydrogen Energy, Vol.35, pp. 3198-3205(2010).
[14]T. Iida, H. Matsushima and Y. Fukunaka,“Water Electrolysis under a magnetic Field,” Journal of The Electrochemical Society, Vol. 154, pp.112-115(2007).
[15]T. Weier, J. Huller, G. Gerbeth and F. Weiss, “Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis”, Chemical Engineering Science, Vol 60, pp. 293 – 298.(2005).
[16]H. Matsushima, D. Kiuchi and Y. Fukunaka,“Measurement of dissolved hydrogen supersaturation during waterelectrolysis in a magnetic field,” Electrochimica Acta, Vol. 54 , pp. 5858-5862(2009).
[17]H. Matsushima, T. Iida and Y. Fukunaka, “Gas bubble evolution on transparent electrode during water electrolysis in a magnetic field,” Electrochimica Acta, Vol. 100, pp. 261-264(2013).
[18]J. A. Koza, S. Mühlenhoff, P. Żabiński, P. A. Nikrityuk, K. Eckert, M. Uhlemann, A. Gebert, T. Weier, L. Schultz and S. Odenbach, “Hydrogen evolution under the influence of a magnetic field,” Electrochimica Acta, Vol. 56, pp. 2665-2675(2011).
[19]M. Y. Lin, L. W. Hourng and C. W. Kuo, “The effect of magnetic force on hydrogen production efficiency in water electrolysis,” Int. J. Hydrogen energy, Vol 37, pp. 1311-1320(2011).
[20]M. Y. Lin and L. W. Hourng, “Effects of magnetic field and pulse potential on hydrogen production via water electrolysis,” International Journal of Energy Research, Vol. 38, pp. 106-116(2014).
[21]H. Zhang, G. Lin and J. Chen, “Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production,” Int J Hydrogen Energy, Vol 35, pp. 10851-10858(2010).
[22]K. Zeng and D. Zhang, “Recent progress in alkaline water electrolysis for hydrogen production and applications,” Progress in Energy and Combustion Science, Vol.36, pp.307-326(2010).
[23]J. Ivy, Summary of electrolytic hydrogen production: milestone completion report, National Renewable Energy Laboratory., Colorado, (2004).
[24]F. Guttman and O. J. Murphy, Modern Aspects of Electrochemistry. Plenum Press ,New York(1983).
[25]魚崎浩平,喜多英明同撰,黃忠良譯,基本電化學,復漢出版社(1983)。
[26]J. Koryta, W. Dvorak and L. Kavan, Principles of Electrochemistry Second Edition, John Wiley and Sons, New York(1993).
[27]田福助,電化學基本原理與應用,五洲出版社 (2004)。
[28]O. Darrigol, Electrodynamics from Ampère to Einstein, Oxford, [England]: Oxford University, p.327 (2000).
[29]張啟陽,電磁學,東華書局(1999)。
[30]H. D. Young, University Physics, 8th Ed., Addison-Wesley,(1992).
[31]J. M. Gras and P. Spiteri, “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis,” International Journal of Hydrogen Energy, Vol. 18, pp. 561-566 (1993).
[32]田中正三郎著、賴耿陽譯著,應用電化學,應用新科技-應用電化學,復漢出版社(1998)。
[33]P. Marčeta and D. L. Stojić, “Comparison of different electrode materials–energy requirements in the electrolytic hydrogen evolution process,” Journal of Power Sources, Vol. 157, pp. 758-764(2006).
指導教授 洪勵吾 審核日期 2015-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明