博碩士論文 975401021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:18.220.195.105
姓名 陳冠宏(Kuan-hung Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鍺矽氧和諧作用以精準操控鍺量子點移動與定位之研究
(Precise control over Ge quantum dot migration and placement via cooperative interaction of Germanium/Silicon/Oxygen for quantum tunneling devices)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 量子點的電子能階★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性
★ 自對準矽奈米線金氧半場效電晶體之研製★ 鍺浮點記憶體之研製
★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析★ 應用於數位電視頻帶之平衡不平衡轉換器設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文探討矽、鍺和氧原子之間的和諧互動機制,以精準定數和定位鍺量子點。首先,藉由矽鍺合金在高溫氧化的過程之中,會選擇性地氧化矽原子形成二氧化矽並且析出鍺原子的方法,我們可以製作出埋藏在二氧化矽中之鍺奈米晶粒。我們進一步發現在後續的高氧化或退火的製程之中,經由矽、鍺和氧之間的巧妙交互作用,可以有效地誘發已埋藏在二氧化矽中之鍺奈米晶粒的聚合成長、移動,甚至晶體形貌的變化。其中關鍵的因子有三:在鍺奈米晶粒的鄰近周遭是否有適量的含矽薄膜(或矽原子源)、是否有足夠的氧原子供應以及鍺扮演著催化劑的角色來協助鄰近含矽薄膜或矽原子源的局部氧化發生。經由實驗設計,我們發現在鍺量子點的表面存在有矽、鍺和氧彼此的競爭、破壞以及再重建的交互作用。若妥善運用此交互作用並加以設計,我們可以精準地掌控鍺量子點的成長熟化,進而控制其晶體形貌與大小,甚至設計含矽薄膜(或矽原子源)的位置以引導鍺量子點至指定之定點位置。
矽、鍺和氧之間的互動反應簡述如下:在氧化矽鍺合金形成鍺奈米晶粒後,若鍺奈米晶粒的周圍有含矽薄膜或矽原子源,鍺原子會催化分解含矽薄膜的鍵結,使之釋放出矽原子。由於矽與鍺之化學親和力相近,被釋放的矽原子會快速地移動、貼近鍺奈米晶粒的表面,並進一步與鍺量子點表面的二氧化矽發生化學反應:Si + SiO2(s) 2SiO(g),將二氧化矽分解成可揮發的SiO,並在鍺奈米晶粒前方形成空間孔洞。此空間孔洞提供了鍺奈米晶粒成長與移動的空間。此外,SiO亦可能移動到鍺奈米晶粒後方與外部提供的氧原子反應,再次形成SiO2。由於生成固體SiO2時,其體積約為原先的矽原子的2.2倍,此體積膨脹可以藉由推擠鍺奈米晶粒往前方的空間孔洞移動而獲得空間的舒緩。如此一來只要在有足夠的含矽薄膜(或矽原子源)與氧原子供應的環境下,可不斷地將鍺奈米晶粒往矽源的方向移動。
值得一提的是,矽原子的釋放與否主要是透過鍺的催化來協助周遭的含矽薄膜(如氮化矽或純矽)發生局部的分解與氧化。因此除了鍺奈米晶粒與含矽薄膜之外,在鍺奈米晶粒/氮化矽薄膜界面是否有充分的氧足以促成局部氧化反應的發生是另一重要的關鍵因子。因為氧在二氧化矽與鍺內的擴散能力明顯有別。因此,在二氧化矽之中,若鍺奈米晶粒濃度或密度過高時,鍺奈米晶粒本身也會阻擋外部氧的擴散,導致在鍺奈米晶粒/緩衝氮化矽界面處無足夠的氧濃度,也就無法催化含矽薄膜(如氮化矽或純矽)局部的分解與氧化。如此一來,既無矽原子的釋放,也就無法誘發高密度鍺奈米晶粒的移動與成長。
為解決此一問題,我們在高鍺含量的矽鍺合金和氮化矽緩衝層之間設計並插入了一低鍺含量的矽鍺合金薄膜。如此一來,不僅可有效地讓氧原子擴散到鍺/氮化矽表面誘發一系列的反應,也可藉由氧化高鍺含量的矽鍺合金來形成大顆的鍺球狀晶粒,達到有效掌控鍺晶粒尺寸的目標。
基於以上的機制,我們將填入奈米溝渠或孔洞結構中的矽鍺合金氧化後,可以成功地製備球狀鍺量子點。而且藉由調整奈米溝渠或孔洞結構的幾何結構與尺寸大小,我們可以精準地在奈米溝渠或奈米孔洞中控制其位置與數量。當多邊形奈米孔洞的內切圓半徑大於15 nm,可以將鍺量子點置放在多邊形孔洞的角落或邊緣。當多邊形奈米孔洞的內切圓半徑小於15 nm,鍺量子點則會被引導到孔洞的正中心形成一個單一的量子點。使用這種方法,我們進一步地製作出量子點共振穿隧二極體。
摘要(英) This thesis investigates a cooperative mechanism that involves the participation and interaction of Si, Ge and oxygen interstitials for precise numbering and placing Ge quantum dots (QDs). First, using the method, selective oxidation of Si atoms then formation of SiO2 and separation of Ge atoms during high-temperature oxidation of SiGe layer, we are able to fabricate Ge QDs embedded SiO2. During high-temperature oxidation or annealing, we further observe the interaction of Si, Ge, and oxygen interstitials to facilitate the aggregation, growth and migration and even changing crystal morphologies of the Ge nanocrystallites. There are three key Factors: Whether the presence of the Si-containing layer (or source of Si) adjacent to Ge nanocrystallites, whether the presence of sufficient oxygen interstitials, and the local oxidation of Si-containing layer adjacent to Ge nanocrystallites by the Ge acting as a catalyst. We observe the interaction of competition, destruction, and reconstruction between Si, Ge, and oxygen interstitials at the surface of Ge nanocrystallites by the designed experiments. If we take advantage of the interaction, we would be able to precisely control the number, placement and crystal mophology of Ge nanocrystallites, furthur control the size and crystal morphology, ane even lead Ge nanocrystallites migratation to specified place by controlling the place of Si-conaiting layer (or source of Si interstitials).
The interation of Si, Ge and oxygen interstitials is described briefly below:if the Si-containing layers (or the source of Si) are present near as-formed Ge nanocrystallites by oxidizing SiGe, the Si-containing layers would be decomposited and release Si interstitials by Ge acting as a catalys under thermal annealing in an oxidizing ambient. Because of their affinity for Ge, the Si interstitials first migrate to the surface of the Ge nanocrystallites where they facilitate the creation of voids in front of Ge nanocrystallites via the following reaction: Si(interstitial) + SiO2(s) 2SiO(g). The voids thus created, facilitate the growth and migration of the Ge nanocrystallites. Furthermore, SiO migrate behind the QD and react with O interstitials to re-form the SiO2. The volume of formation SiO2(g) is 2.2 times the original volume of Si interstitials. The stress of volum expansion is released by pushing Ge nanocrystallites into forward void. Thus, when the both sufficient Si and oxygen interstitials are supplied, Ge nanocrystallites would be able to continually migrate towards the source of Si interstitials by unceasingly destruction and construction.
In particular, Si interstitials is released by Ge-catalyzed local oxidation and decomposition of the Si-containing layer (Si3N4 layer or Si layer). Thus, except Ge nanocrystallites and Si-containing layer, sufficient O2 which is supplied at the Ge nanocrystallite/Si3N4 layer interface is another key factor for facilitating local oxidation. The oxygen concentration is significantly reduced because of the Ge’s low affinity for oxygen and the low segregation coefficient of oxygen in Ge. Hence, the high-content or high-density of Ge nanocrystallites embedd SiO2 retard the diffusion of extern oxygen, and cause the insufficient concentration of oxygen at the Ge nanocrystallites/buffer Si3N4 layer interface, and result in Ge nanocrystallites can not catalyze the local decomposition and oxidation of Si-containing layer (Si3N4 layer or Si layer). Thus, there is neither releasing Si nor inducing the growth and migration of high-density Ge nanocrystallites.
For overcoming this issue, we design and insert a low Ge-content poly-SiGe layers between high G-content poly-SiGe layers and buffer Si3N4. Thus, this method not only induce a series reaction by the oxygen effectively diffusing to Ge nanocrystallites/Si3N4 interface, but also form large Ge nanocrystallites by oxidizing high-content Ge poly-SiGe for effective controlling the size of Ge nanocrystallites.
Based on the above mechanism, we oxidize the pre-filled SiGe in nanotrenches and nanocavities, and successfully form spherical Ge QD. Furthermore, we precisely control the position and number of Ge nanocrystallites by tailoring the sizes and geometries of pre-patterned nanotrenches or nanocavities. If the radius (r) of the incircle of nanocavity is more than 15 nm, Ge QDs are placed at the corner or side of nanocavities. If the radius (r) of the corresponding incircle of nanocavity is less than 15 nm, Ge atoms are led the cavity center and form a single Ge QD. Using this method, we further demonstrate quantum tunneling diode and observe clear Coulomb staircases and differential conductance oscillations at 77K
關鍵字(中) ★ 鍺
★ 量子點
★ 矽鍺
★ 氧化
關鍵字(英) ★ Germanium
★ quantum dot
★ SiGe
★ oxidation
論文目次 Table of Contents
摘要................................................ ................................................................................................................................ .......... ...............i
Abstract.............................................................................................................................................................................................iii
致謝...................................................................................... ........... ........... ........... ........... .......... .........................................................vi
Table of Contents.................................................................................................................................................................vii
List of Figures.............................................................................................................................................................................x
Chapter 1 Introduction 1
1-1 Requirements on the Size and Placement of Quantum Dots for Quantum-tunneling Devices 1
1-2 Why Ge Quantum Dots 3
1-3 This Work 4
1-4 Thesis Organization 6
Chapter 2 Controlled Heterogeneous Nucleation and Growth of Germanium Quantum Dots on Nano-patterned Silicon Dioxide and Silicon Nitride Substrates 8
2-1 Introduction 8
2-2 Experimental Procedure 9
2-3 Results and Discussion 9
2-4 Summary 15
Chapter 3 The Role of Si Interstitials in the Migration and Growth of Ge Nanocrystallites under Thermal Annealing in an Oxidizing Ambient 17
3-1 Introduction 17
3-2 Experimental Procedure 18
3-3 Results and Discussion 19
3-3 Summary 26
Chapter 4 The Pivotal Role of SiO Formation in the Migration and Ostwald Ripening of Ge Quantum Dots 27
4-1 Introduction 27
4-2 Experimental Procedure 27
4-3 Low Flux of Si and High Flux of Oxygen 29
4-4 High Flux of Si and High Flux of Oxygen 30
4-5 Low to Medium Flux of Si and Low Flux of Oxygen 33
4-6 High Flux of Si and Low Flux of Oxygen 34
4-7 Summary 37
Chapter 5 The Pivotal Role of Oxygen in the Dynamics of Growth and Movement of Germanium Nanocrystallites 39
5-1 Introduction 39
5-2 The Spherical Ge QDs Formed 39
5-3 The Concentration of Oxygen at Ge Nanocrystallites/Si3N4 Interface 42
5-4 Summary 50
Chapter 6 Precise Ge Quantum Dot Placement for Ge Resonant Tunneling Diodes 53
6-1 Introduction 53
6-2 Ge QD Placement 53
6-2-1 One-dimensional Ge QD Placement 54
6-2-2 Zero-dimensional Ge QD Placement 58
6-3 Single Electron Tunneling Diode 61
6-4 Summary 64
Chapter 7 Conclusion and Future Work 65
7-1 Conclusion 65
7-2 Future Works 67
Reference 69
Publication list 77

參考文獻 Reference
[1] Cahay, “Quantum Confinement VI: Nanostructured Materials and Devices : Proceedings of the International Symposium.“ The Electrochemical Society, (2012).
[2] H. Haug, S. W. Koch, “Quantum Theory of the Optical and Electronic Properties of Semiconductors.“ World Scientific. (1994). C. Weisbuch and B. Vinter, “Quantum semiconductor structures,“ Academic Press Inc, San Diego, (1991).
[3] Y. Wang, N. Herron, ”Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, ” J. Phys. Chem., 95, 525 (1991)
[4] C. E. Bottani, C. Mantini, P. Mailani, M. Manfredini, A. Stella, P. Tognini, P. Cheyssac, and R. Kofman, “Raman, optical-absorption, and transmission electron microscopy study of size effects in germanium quantum dots,” Appl. Phys. Lett., 69, 2409 (1996).
[5] A. Imre1, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein, W. Porod, ”Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata, ” Science, 311, 205 (2006)
[6] I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, and G. L. Snider, ”Digital Logic Gate Using Quantum-Dot Cellular Automata,” Science, 284, 289 (1999)
[7] L. Robledo, J. Elzerman, G. Jundt, M. Atatüre, A.Högele, S. Fält, and A. Imamoglu, “Conditional Dynamics of Interacting Quantum Dots,” Science, 320, 772 (2008).
[8] T. Fujisawa, T. Hayashi, R. Tomita, and Y. Hirayama, “Bidirectional counting of single electrons,” Science, 312, 1634 (2006).
[9] M. A. Green, “Third Generation Photovoltaics: Solar Cells for 2020 and Beyond,” Phys. E, 14, 65 (2002).
[10] K. Laouthaiwattana, O. Tangmattajittaku, S. Suraprapapich, S. Thainoi, P. Changmuang, S. Kanjanachuchai, S. Ratanathamaphan, and S. Panyakeow, “Optimization of stacking high-density quantum dot molecules for photovoltaic effect,” Sol. Energy Mater. Sol. Cells, 93, 746 (2009).
[11] O. Astafiev, K. Inomata, A. O. Niskanen, T. Yamamoto, Y. A, Pashkin, Y. Nakamura, and J. S. Tsai, “Single artificial-atom lasing,” Nature, 449, 588 (2007).
[12] P. Bhattacharya, X. H. Su, S. Chakrabarti, G. Ariyawansa, and A. G, Perera, “Characteristics of a Tunneling Quantum-dot Infrared Photodetector Operating at Room Temperature,” Appl. Phys. Lett., 86, 191106 (2005).
[13] I. L. Medintz, H. T. Uyeda, E. R. Goldman and Hedi. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing, “ Nature Materials, 4, 435 (2005)
[14] C. Y. Zhang, H. C. Yeh, M. T. Kuroki and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,“ Nature Materials, 4, 826 (2005)
[15] L. Zhung, L. Guo, and S. Chou, “Silicon single-electron quantum-dot transistor switch operating at room temperature,” Appl. Phys. Lett., 72, 1205 (1998).
[16] M. Saitoh, H. Harata, and T. Hiramoto, “Room-temperature demonstration of low-voltage and tunable static memory based on negative differential conductance in silicon single-electron transistors,” Appl. Phys. Lett., 85, 6233 (2004).
[17] P. W. Li, W. M. Liao, D. M. T. Kuo, S. W. Lin, P. S. Chen, S. C. Lu and M. J. Tsai, “Fabrication of a germanium quantum-dot single-electron transistor with large Coulomb-blockade oscillations at room temperature,” Appl. Phys. Lett., 85, 1532 (2004).
[18] P. Michler, A. Kiraz1, C. Becher, W. V. Schoenfeld, P. M. Petroff, Lidong Zhang, E. Hu, A. Imamoglu, “A Quantum Dot Single-Photon Turnstile Device,” Science., 290, 2282 (2000).
[19] W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient Single-Photon Sources Based on Low-Density Quantum Dots in Photonic-Crystal Nanocavities,” Phys. Rev. Lett., 96, 117401 (2006).
[20] Z. Yuan, B. E. Kardynal, R. M. Stevenson, A. J. Shields, C. J. Lobo, K. Cooper, N. S. Beattie, D. A. Ritchie, M. Pepper, “Electrically Driven Single-Photon Source,” Science, 295, 102 (2002).
[21] L. Robledo, J. Elzerman, G. Jundt, M. Atatüre, A. Högele1, and S. Fält, “Conditional Dynamics of Interacting Quantum Dots,“ Science, 9, 772, (2008)
[22] Y. Hu, H. O. H. Churchil, D.. J. Reilly, J. Xiang, C. M. Lieber, and C. M. Marcus, “A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor,“ Nature Nanotechnology, 2, 622 (2007).
[23] L. C. Ma, R. Subramanian, H. W. Huang, V. Ray, C. U. Kim, S. J. Koh, “Electrostatic funneling for precise nanoparticle placement: a route to wafer-scale integration.,” Nano Lett., 7, 439 (2007).
[24] G. Daniele, Z. Natalia, S. Cheng, F. Maria, F. Sirine, V. Tony, G. Giulia, “Solution Synthesis of Germanium Nanocrystals:  Success and Open Challenges,” Nano Lett., 4, 597 (2004).
[25] J. D. Gillaspy, “Highly charged ions,” J. Phys. B: At. Mol. Opt. Phys, 34, R93 (2001).
[26] R. D. Schaller, and V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion,” Phys. Rev. Lett., 92, 186601 (2004).
[27] M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, “Multiple exciton generation in colloidal silicon nanocrystals,” Nano Lett., 7, 2506 (2007).
[28] Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B, 51, 1658 (1995).
[29] M. Chu, Y. Sun, U. Aghoram, and S. E. Thompson, “Strain: A Solution for Higher Carrier Mobility in Nanoscale MOSFETs,” Annu. Rev. Mater.Res., 39, 203 (2009).
[30] R. Krithivasan, G. Niu, J. D. Cressler, S. M. Currie,K. E. Fritz, R. A. Reed, P. W. Marshall, P. A. Riggs, B. A. Randall, and B.Gilbert, “An SEU hardening approach for high-speed SiGe HBT digital logic,” IEEE Trans. Nucl. Sci., 50, 2126 (2003).
[31] D. Nam, D. Sukhdeo, S. L. Cheng, A. Roy, K. C. Huang, M. Brongersma,Y. Nishi, and K. Saraswat, “Electroluminescence from strained germanium membranes and implications for an efficient Si-compatible laser,” Appl. Phys. Lett., 100, 131112 (2012).
[32] R.Camacho-Aguilera, Y. Cai, N. Patel, J. Bessette, M. Romagnoli, L. C.Kimerling, and J. Michel, “High active carrier concentration in n-type, thin film Ge using delta-doping,” Opt. Exp., 20, 11316 (2012).
[33] X. Chen, C. Li, and H. K. Tsang, “Device engineering for silicon photonics,” NPG Asia Mater., 3, 34 (2011).
[34] K. L. Wang, D. Cha, J. Liu, and C. Chen, “Ge/Si self-assembled quantum dots and their optoelectronic device applications,” Proc. IEEE, 95, 1866 (2007).
[35] Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H. C. Luan, and L. C. Kimerling, “Strain-induced band gap shrinkage in Ge grown on Si substrate,” Appl. Phys. Lett., 82, 2044 (2003).
[36] E. Kasper, “Properties of Strained and Relaxed Silicon Germanium,” INSPEC, London, (1995).
[37] M. L. Lee and E. A. Fitzgerald, “Optimized strained Si/strained Ge dualchannel heterostructures for high mobility p- and n-MOSFETs,” IEDM Tech.Dig., 429 (2003).
[38] Y. Maeda, N. Tsukamoto, and Y. Yazawa, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett., 59, 3168 (1991).
[39] S. Cosentino, S. Mirabella, M. Miritello, G. Nicotra, R. L. Svio, F. Simone, C. Spinella, and A. Terrasi, “The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica,” Nanoscale Res. Lett., 6, 135 (2011).
[40] I. Stavarche, A. M. Lepadatu, T. Stoica, and M. L. Ciurea, “Annealing temperature effect on structure and electrical properties of films formed of Ge nanoparticles in SiO2,” Appl. Surf. Sci., 285, 175 (2013).
[41] Y. Kanemitsu, H. Uto, Y. Masumoto, and Y. Maeda, “On the origin of visible photoluminescence in nanometer-size Ge crystallites,” Appl. Phys. Lett., 61, 2187 (1992).
[42] P. K. Giri, S. Bhattacharyya, S. Kumari, K. Das, S. K. Ray, B. K. Panigrahi, and K. G. M. Nair, “Ultraviolet and blue photoluminescence from sputter deposited Ge nanocrystals embedded in SiO2 matrix,” J. Appl. Phys., 103, 103534 (2008).
[43] J. G. Zhu, C. W. White, J. D. Budai, S. P. Withrow, and Y. Chen, “Growth of Ge, Si, and SiGe nanocrystals in SiO2 matrices,” J. Appl. Phys., 78, 4386 (1995).
[44] J. V. Borany, R. Grötzschel, K. H. Heinig, A. Markwitz, W. Matz, B. Schmidt, and W. Skorupa, “Multimodal impurity redistribution and nanocluster formation in Ge implanted silicon dioxide films,” Appl. Phys. Lett., 71, 3215 (1997).
[45] S. Mirabella, S. Cosentino, A. Gentile, G. Nicotra, N. Piluso, L. V. Mercaldo, F. Simone, C. Spinella, and A. Terrasi, “Matrix role in Ge nanoclusters embedded in Si3N4 or SiO2,” Appl. Phys. Lett., 101, 011911 (2012).
[46] Y. Nakamura, A. Murayama, R. Watanabe, T. Iyoda and M. Ichikawa, “Self-organized formation and self-repair of a two-dimensional nanoarray of Ge quantum dots epitaxially grown on ultrathin SiO2-covered Si substrates,“ Nanotechnology, 21, 095305 (2010).
[47] E. S. Kim, N. Usami and Y. Shiraki, “Control of Ge dots in dimension and position by selective epitaxial growth and their optical properties,“ Appl. Phys. Lett., 72, 1617 (1998).
[48] M. W. Dashiell, U. Denker, C. Müller, G. Costantini, C. Manzano, K. Kern and O. G. Schmidt, “Photoluminescence of ultrasmall Ge quantum dots grown by molecular-beam epitaxy at low temperatures,“ Appl. Phys. Lett., 80, 1279 (2002).
[49] Y. Tu and J. Tersoff, “Coarsening, Mixing, and Motion: The Complex Evolution of Epitaxial Islands,” Phys. Rev. Lett., 98, 096103 (2007).
[50] M. Brehm, M. Grydlik, F. Schaffler, and O. G. Schmidt, “Evolution and coarsening of Si-rich SiGe islands epitaxially grown at high temperatures on Si (001),” Microelectronic Engineering, 125 , 22(2014).
[51] T. Stoica and E. Sutter, “Ge dots embedded in SiO2 obtained by oxidation of Si/Ge/Si nanostructures,” Nanotechnology, 17, 4912 (2004).
[52] E. Sutter, F. Camino, and P. Sutter, “One-step synthesis of Ge-SiO~2 core-shell nanowires,” Appl. Phys. Lett., 94, 083109 (2009).
[53] Q. Li, S. M. Han, S. R. J. Brueck, S. Hersee, Y. B. Jiang, and H. Xu, “Selective growth of Ge on Si (100) through vias of SiO2 nanotemplate using solid source molecular beam epitaxy,” Appl. Phys. Lett., 83, 5032 (2003).
[54] M. Grydlik, G. Langer, T. Fromherz, F. Schaffler, M. Brehm, “Recipes for the fabrication of strictly ordered Ge islands on pit-patterned Si(001) substrates,” Nanotechnology, 24, 105601 (2013).
[55] F. Liu, A. H. Li, M. G. Lagally, “Self-assembly of two-dimensional islands via strain-mediated coarsening,” Phys. Rev. Lett., 87, 126103 (2001).
[56] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Lu, M. J. Tsai, “Formation of atomic-scale Germanium quantum dots by selective oxidation of SiGe/Si-on-Insulator,” Appl. Phys. Lett., 83, 4628 (2003).
[57] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum-dots formed by thermal oxidation of Si1-xGex-on-insulator,” IEDM Tech.Dig., 18, 145402 (2007).
[58] C. Y. Chien, Y. R. Chang, R. N. Chang, M. S. Lee, W. Y. Chen, T. M. Hsu, and P. W. Li, “Formation of Ge quantum dots array in layer-cake technique for advanced photovolatics,” Nanotechnology, 21, 505201 (2010).
[59] K. H. Chen, C. Y. Chien, W. T. Lai, and P. W. Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology., 21, 055302 (2010).
[60] C. Y. Chien, Y. J. Chang, K. H. Chen, W. T. Lai, T. George, A. Scherer, and P. W. Li, “Nanoscale, catalytically-enhanced local oxidation of silicon-containing layers by “burrowing” Ge quantum dots,” Nanotechnology, 22, 435602 (2011).
[61] C. C. Wang, K. H. Chen, I. H. Chen, H. T. Chang, W. Y. Chen, J. C. Hsu, S. W. Lee, T. M. Hsu, M. T. Hung, P. W. Li, “CMOS-compatible generation of self-organized 3D Ge quantum dot array for photonic and thermoelectric applications,” IEEE Trans Nanotechnology, 11,657 (2012).
[62] G. L. Chen, D. M. T. Kuo, W. T. Lai, and P. W. Li, “Tunneling spectroscopy of germanium quantum-dot in single-hole transistors with self-aligned electrodes,” Nanotechnology, 18, 475402 (2007).
[63] I. H. Chen, K. H. Chen, D. M. T. Kuo, and P. W. Li, “Single Ge quantum dot placement along with self-aligned electrodes for effective management of single charge tunneling,” IEEE Trans. Electron Devices, 59, 3224 (2012).
[64] M. H. Kuo, C. C. Wang, W. T. Lai, T. George and P. W. Li,“Designer” Ge Quantum Dots on Si: A novel heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett.., 101, 223107 (2012).
[65] C. C. Wang, P. H. Liao, M. H. Kuo, Tom George, and P. W. Li, “The curious case of exploding quantum dots: Anomalous migration and growth behavior of Ge under Si oxidation,” Nanoscale Research Lett., 8, 192 (2013).
[66] W. Ostwald, ”Lehrbuch der allgemeinen chemie,” Volume 2. Germany, Leipzig. W. Engelmann, (1896).
[67] L. Ratke, P. W. Voorhees Growth and coarsening: Ostwald ripening in material processing. Springer Berlin Heidelberg, 117 (2002).
[68] M. Zinke-Allmang, L. C. Feldman, M. H. Grabow, “Clustering on surfaces,” Surf. Sci.Rep., 16, 377 (1992).
[69] K. H. Chen, C. C. Wang, Tom George, and P. W. Li, “The role of Si interstitials in the migration and growth of Ge nanocrystallites under thermal annealing in an oxidizing ambient,” Nanoscale Research Lett., 9, 339 (2014).
[70] K. H. Chen, C. C. Wang, Tom George, and P. W. Li, “The pivotal role of SiO for formation in the migration and Ostwald Ripening of Ge quantum dots,” Appl. Phys. Lett., 105, 122102 (2014).
[71] G. Kozlowski, Y. Yamamoto, J. Bauer, M. A. Schubert, B. Dietrich, B. Tillack and T. Schroeder, “Selective Ge heteroepitaxy on free-standing Si (001) nanopatterns: A combined Raman, transmission electron microscopy, and finite element method study,” J. Appl. Phys., 110, 053509 (2011).
[72] G. Kozlowski, Y. Yamamoto, J. Bauer, M. A. Schubert, B. Dietrich, B. Tillack and T. Schroeder, “Compliant substrate versus plastic relaxation effects in Ge nanoheteroepitaxy on free-standing Si(001) nanopillars,” Appl. Phys. Lett., 99, 141901 (2011).
[73] A. Olzierski, A. G. Nassiopoulou, I. Raptis and T. Stoica, “Two-dimensional arrays of nanometre scale holes and nano-V-grooves in oxidized Si wafers for the selective growth of Ge dots or Ge/Si hetero-nanocrystals,” Nanotechnology, 15, 1695 (2004).
[74] T. Stoica, V. Shushunova, C. Dais, H. Solak and D. Grützmacher, “Two-dimensional arrays of self-organized Ge islands obtained by chemical vapor deposition on pre-patterned silicon substrates,” Nanotechnology, 18, 455307 (2007).
[75] B. Leroy, “Stresses and silicon interstitials during the oxidation of a silicon substrate,” Philo Mag B, 55, 159 (1987)
[76] N. Guillemot, D. Tsoukalas, C. Tsamis, J. Margail, A. Papon, and J. Stoemenos, “Suppression mechanisms for oxidation stacking faults in silicon oninsulator,” J. Appl. Phys., 71, 1713 (1992)
[77] D. Tsoukalas, C. Tsamis, J. Stoemenos, “Investigation of silicon interstitial reactions with insulating films using the silicon wafer bonding technique,” Appl. Phys. Lett., 63, 3167 (1993)
[78] B. Leroy, “Kinetics of growth of the oxidation stacking faults,” J. Appl. Phys., 50, 7996 (1979)
[79] T. Y. Tan, U. Goesele, “Growth kinetics of oxidation‐induced stacking faults,” Appl. Phys. Lett., 39, 86 (1981)
[80] S. M. Hu, “Formation of stacking faults and enhanced diffusion in the oxidation of silicon,” J. Appl. Phys., 45, 1567 (1974)
[81] D. A. Antoniadis, and I. Moskowitz, “Diffusion of substitutional impurities in silicon at short oxidation times: an insight into point defect kinetics,” J. Appl. Phys., 53, 6788 (1982)
[82] M. S. Carroll, C. L. Chang, J. C. Strum, T. Buyuklimnali, “Complete suppression of boron transient-enhanced diffusion and oxidation-enhanced diffusion in silicon using localized substitutional carbon incorporation,” Appl. Phys. Lett., 73, 3695 (1988)
[83] L. A. Nesbiti, “Annealing characteristics of Si‐rich SiO2 films,” Appl. Phys. Lett., 46, 38 (1985)
[84] R. Tromp, G. W. Rubloff, P. Balk, F. K. LeGoues, and E. J. van Loenen, “High-Temperature SiO2 Decomposition at the SiO2/Si Interface,” Phys. Rev. Lett., 55, 2332 (1985)
[85] K. Hofmann and S. I. Raider, “Acceleration Factors for the Decomposition of Thermally Grown SiO2 Films,” J. Electrochem. Soc., 134, 240 (1987)
[86] B. J. Hinds, F. Wang, D. M. Wolfe, C. L. Hinkel, and G. Lucovsky, “Investigation of postoxidation thermal treatments of Si/SiO2 interface in relationship to the kinetics of amorphous Si suboxide decomposition,” J. Vac. Sci. Technol B, 16, 2171 (1998)
[87] D. Starodub, E. P. Gusev, E. Garfunkel, and T. Gustafsson, “Silicon oxide decomposition and desorption during the thermal oxidation of Silicon” Surf. Rev. Lett., 6, 45 (1999)
[88] A. A. Stekolnikov and F. Bechstedt, “Shape of free and constrained group-IV crystallites: Influence of surface energies” Phys. Rev. B, 72, 125326 (2005)
[89] E. S.Marstein, A. E. Gunnaes, U. Serincan, S. Jorgensen, A. Olsen, R. Turan, and T. G. Finstad, “Mechanisms of void formation in Ge implanted SiO2 films” Nucl. Instrum. Methods Phys. Rev., Sect. B 207, 424 (2003)
[90] W. K. Choi, V. Ho, V. Ng, Y. W. Ho, S. P. Ng, and W. K. Chim, “Mechanisms of void formation in Ge implanted SiO2 films” Appl.Phys. Lett., 86, 143114 (2005)
[91] G. K. Celler, L. E. Trimble, T. T. Sheng, S. G. Kosinski, and K. W. West, “Precipitation of Group V elements and Ge in SiO2 and their drift in a temperature gradient,” Appl. Phys. Lett., 53, 1178 (1988)
[92] G. K. Celler and L. E. Trimble, “Catalytic Effect of SiO on Thermomigration of Impurities in SiO2,” Appl. Phys. Lett., 54, 1427 (1989)
[93] R. C. Weast, D. R. Lide, M. J. Astle, and W. H. Beyer “CRC Handbook of Chemistry and Physics“, 70th ed., CRC, Boca Raton, (1989)
[94] W. L. Jolly and W. M. Latimer, “The Equilibrium Ge(s) + GeO2(s) = 2GeO(g). The Heat of Formation of Germanic Oxide,” J. Am. Chem. Soc., 74, 5757 (1952)
[95] M. Nagamori, J. A. Boivin, and A. Claveau, “Gibbs free energies of formation of amorphous Si2O3, SiO and SiO2,” J. Non-Cryst., 189, 270 (1995)
[96] P. H. Liao, T. C. Hsu, K. H. Chen, T. H. Cheng, T. M. Hsu, C. C. Wang, T. George, and P. W. Li, “Size-tunable strain engineering in Ge nanocrystals embedded within SiO2 and Si3N4,” Appl. Phys. Lett., 105, 172106 (2014)
[97] L. Tsetseris and S. T. Pantelides, “Oxygen Migration, Agglomeration, and Trapping: Key Factors for the Morphology of the Si−SiO2 Interface,” Phys. Rev. Lett., 97, 11601 (2006)
[98] M. A. Lamkin, and F. L. Riley, “Oxygen mobility in silicon dioxide and silicate glasses: a review,” J. European Ceramic Soc., 10, 347 (1992)
[99] R. H. Doremus, “Oxidation of silicon by water and oxygen and diffusion in fused silica,” J. Phys. Chem., 80, 1773 (1976)
[100] E. L. Williams, “Diffusion of Oxygen in Fused Silica,” J. Am. Ceram. Soc., 48, 190 (1965)
[101] B. E. Deal and A. S. Grove, “General relationship for the thermal oxidation of Silicon,” J. Appl. Phys., 36, 2770 (1965)
[102] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era vol. 1, Chap. 7, Lattice Press, California,1986
[103] J. Eugene, F. K. LeGoues, V. P. Kesan, S. S. Iyer and F. M. d’Heurle, “Diffusion versus oxidation rates in silicon‒germanium alloys.,” Appl. Phys. Lett., 59, 78 (1991)
[104] F. K. LeGoues, R. Rosenberg and B. S. Meyerson, “Kinetics and mechanism of oxidation of SiGe: dry versus wet oxidation ,” Appl. Phys. Lett., 54, 644 (1989)
[105] TMA TSUPREME4 2008 Version 2008.2 Technology Modeling Associates, Inc.
[106] M. Nagase, A. Fujiwara, K. Yamazaki, Y. Takahashi, K. Murase and K. Kurihara, “Si nanostructures formed by pattern-dependent oxidation,” Microelectron. Eng., 41/42, 527 (1998)
[107] K. K. Likharev, “Si nanostructures formed by pattern-dependent oxidation,” Proc. IEEE, 87, 606 (1999)
[108] H. Grabert and M. H. Devoret, “Single Charge Tunneling—Coulomb Blockade Phenomena in Nanostructures,” (New York: Plenum) (1992)
[109] J. W. Han, J. S. Oh, and M. Meyyappan, “Vacuum nanoelectronics: Back to future?-Gate insulated nanoscale vaccum channel transistor,” Appl. Phys. Lett., 100, 213505 (2012)
指導教授 李佩雯、郭明庭(Pei-Wen Li David Ming-Ting Kuo) 審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明