博碩士論文 102022008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:3.17.110.42
姓名 彭思齊(Szu-Chi Peng)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 多光譜遙測影像自動偵測城市道路
(AUTOMATIC URBAN ROAD DETECTION FROM MULTISPECTRAL REMOTE SENSING IMAGES)
相關論文
★ 利用影像處理進行遙測影像的河道偵測與醫學影像的血管偵測★ 可調式都卜勒主動雷達校正器之改良研究
★ 基於色彩校正的遙測影像變遷偵測★ 應用階層式親和力傳播理論進行高光譜影像分類
★ 遙測影像中雲及其陰影的移除及雲高估計★ 龜山島周圍海域熱液與地震的關係
★ 利用穿牆連續波雷達分析人體步態的微都卜勒效應★ 新穎的混合式角反射器法於全極化合成孔徑雷達校正
★ 應用多光譜遙測影像進行線性及非線性 水深反演模式之探討★ 非線性像元分解考慮多次反射應用於高光譜影像
★ 使用MODIS偵測地溫異常-熱異常和地震的相關性★ 地球同步衛星觀測資料之雲區像素辨識
★ 結合掩星折射率與高光譜紅外線觀測之大氣溫溼度垂直剖面反演★ 應用遙測影像之水深校正於東沙環礁海草棲地變遷
★ 基於SAR的數值高程模型的定性與定量分析★ 應用多時期向日葵8號衛星影像進行雲像素的偵測與追蹤
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 道路網路是城市化的一個重要指標,道路的信息提供了生活中的各種應用,如城市設計、導航及城市測繪,隨著都市的發展,興建了許多新道路使交通更便利,但手動更新道路資訊,是一件非常耗費人力及時間的事情。另外在颱風豪雨或強烈地震後,山區道路也經常坍方中斷,造成偏遠鄉鎮運補的困難。為了道路資訊自動更新及救災運補管理,相對地從光學遙感影像中自動偵測道路網路是一件既經濟又有效率的方式。

在過去的數十年來,大量的研究都集中於中低分辯率的影像下做道路的提取,隨著遙感影像分辨率的提高,道路特徵的細節化和複雜化,使高分辨率影像中偵測道路的方法與中低分辯率下有很大的差別,因此研究從高分辨率影像中偵測道路具有重要的理論及實際意義。

在這份研究中,主要是利用一些道路的特徵對高分辨率遙感影像進行道路網路的提取,以下是本研究的主要流程,首先,利用多尺度的Retinex算法來增強影像,再利用影像的分類取得道路的初步輪廓,接著根據道路的均質特性,光源不變性理論和多權重的方法來改善分類的結果,為了消除路面上的雜訊,利用形態學的方法來處理,最後利用形狀指標去除非道路的區域

摘要(英) Road network is one important index for urbanization. The information of roads provides various applications in daily life, such as urban design, navigation, and urban mapping. With the development of the city, transportation becomes more convenient and road networks also change frequently. Also after typhoons, heavy rains or earthquakes, there are usually some debris flows which may block the roads in mountainous area. Because the update of this information manually is tedious and time-consuming, for the purpose of road network updates and transportation management after disasters, automatic road extraction from optical remotely sensed images becomes an economic and efficient approach to obtain and update road networks.

In the past few decades, many approaches are proposed to extract road from remote sensing imagery, but most of studies have applied on the road extraction from low-resolution imagery. Because of the complexity of road characteristics, road extraction in high resolution images is quite different from in low resolution images. Therefore, the study of the urban road network extraction has important theoretical and practical significance.

In this study the urban road extraction of the high resolution remote sensing images based on the several basic characteristics of roads. Our proposed method includes the following steps. First, the multi-scale retinex method is used to enhance the image, and then the k-means algorithm is used to obtain the initial outline of roads. Followed by the road’s homogeneous property, the illuminant invariance theory and the multi-weighted method are used to improve the accuracy of outline. Then morphology is adopted to eliminate noise and short lines. Finally the shape index is used to remove non-road areas .

關鍵字(中) ★ 遙測影像
★ 道路偵測
★ 數學形態學
關鍵字(英) ★ REMOTE SENSING IMAGES
★ ROAD DETECTION
★ MATHEMATICAL MORPHOLOGY
論文目次 摘要 i

Abstract ii

致謝 iii

Table of Contents iv

List of figures v

List of tables vi

Chapter 1 Introduction - 1 -

1.1 Motivation - 1 -

1.2 Statement of the problem - 2 -

1.3 Objectives - 3 -

1.4 Thesis method and schematic diagram - 5 -

1.5 Thesis organization - 7 -

Chapter 2 Background - 8 -

2.1 Road model - 8 -

2.2 Illuminant invariance theory concept and background knowledge - 9 -

Chapter 3 Methodology - 12 -

3.1 The Retinex - 12 -

3.2 Illumination invariant image - 17 -

3.3 Homogeneous property measurement - 19 -

3.4 K-means algorithm - 21 -

3.5 Mathematical morphology - 21 -

3.6 Hough transform - 23 -

Chapter 4 Experiment Result - 25 -

4.1 Image introduction - 25 -

4.2 Rural area - 27 -

4.3 Urban area - 41 -

Chapter 5 Conclusion and Future Work - 47 -

Bibliographies - 49 -

參考文獻 [1] D.J. Jobson, Z. Rahman, and G.A. Woodell. ”A multiscale Retinex for bridging the gap between color images and the human observation of scenes,” IEEE Transactions on Image Processing, vol. 6, no. 7, pp. 965-976, July 1997.

[2] G. Finlayson, S. Hordley, and M. Drew, “Removing shadows from images,” in European Conference on Computer Vision, 2002.

[3] H. Hu, Y. Liu, X. Wang, B. Xu, X. Zhu, “Automatic road extraction in high-resolution SAR images, ” Application Research of Computers, vol. 25, no.12, pp.91, 2008.

[4] S. Zhang and K.S. Fu, “A Thinning Algorithm for Discrete Binary Images,’’ Proc. ICCA’ 84, Int. Conference on Computers and Applications, Beijing, pp. 879-886, 1984.

[5] J. Wang and P.J. Howarth, “Use of the Hough transform in automated lineament detection,’’ IEEE Transaction on Geoscience and Remote Sensing, Vol. 28, No. 4 , 1990.

[6] G. Vosselman and J. Knecht, “Road tracing by profile matching and Kalman filtering,’’ In Proceedings of the Workshop on Automatic Extraction of Man-Made Objects from Aerial and Space Images, Birkhaeuser, Germany. pp. 265–274, 1995.

[7] B.A. Wandell. “The synthesis and analysis of color images,’’ IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 1, pp. 2-13,1987.

[8] G.D. Finlayson. “Color in perspective,’’ IEEE transactions on Pattern analysis and Machine Intelligence, vol. 18, no. 10, October 1996.

[9] G.D. Finlayson, M.S. Drew and C. Lu, “Intrinsic images by entropy minimization,” in Proceedings of European Conference on Computer Vision, pp. 582–595, 2004.

[10] G. Finlayson, S. Hordley, C. Lu, and M. Drew, “On the removal of shadows from images,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 1, pp. 59–68, January 2006.

[11] E.H. Land. ”Recent advances in Retinex theory,” Vision Research, vol. 26, no. 1, pp. 7-21, 1986.

[12] D.J. Jobson, Z. Rahman, G.A. Woodell, ”Properties and Performance of a Central/Surround Retinex,” IEEE Transaction on Image Processing, vol. 6, no. 3, pp. 451-462, March 1997.

[13] B.K. Horn, Robot Vision. MIT Press, 1986.

[14] S. Tatiraju, A. Mehta, “Image Segmentation using kmeans clustering, EM and Normalized Cuts”, Department of EECS University Of California Irvine, pp. 1-7, 2008.

指導教授 任玄(Hsuan Ren) 審核日期 2015-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明