博碩士論文 103323046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.191.130.149
姓名 楊繼仁(Chi-ren Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用四極柱質譜儀與光放射光譜儀進行磊晶矽薄膜於ECR-CVD之電漿診斷研究
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用電子迴旋共振化學氣相沉積系統(ECRCVD)製備磊晶矽薄膜,並使用光放射光譜儀(OES)監測電漿物種變化,四極柱質譜儀(QMS)監測電漿中自由基之濃度。藉由改變製程功率、製程壓力、氫稀釋比以及磁場共振位置,並佐以橢圓儀、拉曼光譜儀來分析薄膜之厚度和結晶性,最後將電漿量測結果以及薄膜特性相互比對,了解電漿內部之反應機制,以建立電漿診斷平台。
實驗結果發現製程功率的提升可以使沉積速率增加,但是高功率環境下薄膜之結晶程度會降低。製程壓力的提升會使薄膜沉積速率以及結晶率有上升的趨勢。若增加氫稀釋比,製程中氫氣的蝕刻機制會使薄膜上的結晶率增加,但同時會降低薄膜之沉積速率。最後,藉由調整ECRCVD主磁場電流,可以改變電漿共振區在腔體中的位置,愈大的主磁場電流可使共振區越靠近基板,因此會提升薄膜之沉積速率,但由於離子轟擊的現象會降低薄膜之結晶率。
本研究整合OES和QMS來建立電漿診斷平台,利用其來解析ECRCVD 中電漿之組成以及各粒子間之反應機制,並藉由改變各項製程參數來了解對磊晶矽薄膜沉積速率以及結晶性之影響。
摘要(英) In this study, OES (Optical emission spectrometer) was used to diagnose the variation of plasma species, QMS (Quadrupole mass spectrometry) was utilized to determine the concentration of free radicals in plasma, and the epitaxial silicon thin film was deposited by ECR-CVD (electron cyclotron resonance chemical vapor deposition). The film quality such as thickness and crystallinity were investigated by Ellipsometer and Raman Spectrometer. The relationship between the film quality and plasma characteristics with varying process parameters (microwave power, working pressure, magnetic field resonance position and dilution ratio) was discussed.
The results show that the deposition rate will increase with the increasing of microwave power, but the crystallinity will decrease at high microwave power. High process pressure will cause high deposition rate and crystallinity. If the hydrogen dilution ratio is enhanced, the mechanism of hydrogen etching will cause the increasing of crystallinity, but decrease the deposition rate. Finally, larger magnetic coil current will cause better deposition rate because the plasma zone is close to substrate, but the ion bombardment effect will cause worse crystallinity.
Consequently, the research integrates the OES and QMS to analyze the mechanism of ECR plasma, and by adjusting the process parameters, the property of epitaxial silicon thin film is determined.
關鍵字(中) ★ ECR-CVD
★ 電漿診斷
★ 磊晶矽
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1前言 1
1-2 研究動機及目的 2
第二章、文獻整理與基本回顧 4
2-1 電漿簡介 4
2-1-1 電漿原理 4
2-1-2 電漿特性 7
2-1-3 電子迴旋共振電漿 8
2-2薄膜沉積 10
2-2-1 薄膜沉積原理 10
2-2-2 化學氣相沉積(CVD) 13
2-3 磊晶矽薄膜(Epitaxial Silicon) 15
2-4 電漿診斷系統 21
2-4-1 光放射光譜儀 21
2-4-2 四極柱質譜儀(QMS) 22
第三章、實驗方法與設備 24
3-1 實驗流程 24
3-2 實驗步驟 25
3-2-1 參數設定 25
3-2-2 實驗流程 26
3-3 實驗設備及原理 27
3-3-1 電子迴旋共振化學氣相沉積系統(ECR-CVD) 27
3-3-2 光放射光譜儀OES 32
3-3-3 四極柱質譜儀QMS 34
3-3-4 橢圓偏光儀 43
3-3-5 拉曼光譜儀 44
第四章、結果與討論 45
4-1 改變微波功率之電漿及薄膜分析 47
4-1-1 質譜儀量測 47
4-1-2 光譜儀量測 50
4-2 改變製程壓力之電漿及薄膜分析 54
4-2-1 質譜儀量測 54
4-2-2 光譜儀量測 57
4-3 改變氫稀釋比之電漿及薄膜分析 60
4-3-1 質譜儀量測 61
4-3-2 光譜儀量測 63
4-4 改變磁場組態之電漿及薄膜分析 66
4-4-1 質譜儀量測 67
4-4-2 光譜儀量測 69
第五章、結論 72
參考文獻 74
參考文獻 [1] S. J. DeBoer, V. L. Dalal, G. Chumanov and R. Bartels,” Low temperature epitaxial silicon film growth using high vacuum electron-cyclotron-resonance plasma deposition”, Appl. Phys. Lett., Vol. 66, pp. 19-21, 1995.
[2] Y. Kawai, N. Itagaki, M. Koga and H. Muta, “Production of low electron temperature ECR plasma”, Surface & Coatings Technology, Vol 193, pp. 11-16, 2005.
[3] C. M. Chou, C. C. Chuang, C. H. Lin, C. J. Chung and J. L. He, “Plasma diagnostics for pulsed-dc plasma-polymerizing para-xylene using QMS and OES”, Surface & Coatings Technology, Vol 205, pp. 4880-4885, 2011.
[4]B. Chapman, Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[5]羅正忠,半導體製程技術導論,歐雅出版社,2006年
[6] M. A. Liberman and A. J. Lichtenberg, Plasma Discharges and Material Processing 2nd, A John Wiley & Sons, Inc Press, 2005.
[7] M. Shindo, S. Hiejima, Y. Ueda, S. Kawakami, N. Ishii and Y. Kawai, “Parameters measurement of ECR C4F8/Ar plasma”, Thin Solid Films, Vol 345, pp. 130-133, 1990.
[8] J. A. Venables, “Nucleation and growth of thin films”, Rep. Prog. Phys., Vol 47, pp.399-459, 1984.
[9] K. Reichelt, “Nucleation and growth of thin films”, Vacuum, Vol 38, pp.1083-1099, 1988.
[10]陳一塵,薄膜物理課程講義,桃園市,國立中央大學,民國103年。
[11] 施敏,半導體元件物裡與製作技術, 第二版,黃調元譯,新竹市,國立交通大學出版社,民國90年。
[12] C. C. Tsai, G. B. Anderson and R. Thompson, “Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma”, Journal of Non-Crystalline Solids, Vol 137&138, pp. 673—676, 1991.
[13] S. J. DeBoer, V. L. Dalal, G. Chumanov and R. Bartels, “Low temperature epitaxial silicon film growth using high vacuum electron-cyclotron-resonance plasma deposition”, Appl. Phys. Lett., Vol. 66, pp. 19, 1995.
[14] K. Sasaki, H. Tomoda and T. Takada, “Etching action by atomic hydrogen and low temperature silicon epitaxial growth on ECR plasma CVD”, Vacuum, vol. 51, No. 4, pp. 537-541, 1998.
[15] J. Platen, B. Selle, I. Sieber, S. Brehme, U. Zeimer and W. Fuhs, “Low-temperature epitaxial growth of Si by electron cyclotron resonance chemical vapor deposition”, Thin Solid Films, Vol. 381, pp. 22-30, 2001.
[16] Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azuma and H. Shirai, “ Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp.256-260, 2001.
[17] A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol. 337, pp.1-6, 1999.
[18] A. Matsuda, M. Takai, T. Nishimoto and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, Vol.78, pp.3-26, 2003.
[19] A. Matsuda. “Thin-Film Silicon —Growth Process and Solar Cell Application”, J.Japan Apply Physics, Vol 43, pp. 7909–7920, 2004.
[20] Y. Ruohe and L. Kuixun, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, Journal of Shantou University, Vol. 13, pp. 16-19, 1997.
[21] W. M. M. Kessels, M. C. M. van de Sanden and D. C. Schram, “Film growth precursors in a remote SiH4 plasma used for high-rate deposition of hydrogenated amorphous silicon”, J. Vac. Sci. Technol. A, Vol. 18, pp. 5-15, 2000.
[22] E. Camps, F. Becerril, S. Muhl, O. Alvarez-Fregoso and M. Villagr´an, “Microwave plasma characteristics in steel nitriding process”, Thin Solid Films, Vol.373, pp. 293-298, 2000.
[23] M. Takai, T. Nishimoto, M. Kondo and A. Matsuda, “Anomalous behavior of electron temperature in silane glow discharge plasmas”, Thin Solid Films, Vol 390, pp. 83-87, 2001.
[24] A. Matsuda, M. Takai, T. Nishimoto and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials &Solar Cells, Vol 78, pp. 3–26, 2003.
[25] H. Zhou, J. Watanabe, M. Miyake, A. Ogino, M. Nagatsu and R. Zhan, “Optical and mass spectroscopy measurements of Ar/CH4/H2 microwave plasma for nano-crystalline diamond film deposition”, Diamond & Related Materials, Vol. 16, pp.675-678, 2007.
[26] R. Barni, S. Zanini and C. Riccardi, “Diagnostics of reactive RF plasmas”, Vacuum, Vol. 82, pp. 217-219, 2008.
[27] S. Zimmermann, N. Ahner, F. Blaschta, M. Schaller, H. Rulke, S.E. Schulz and T. Gessner, “Analysis of the impact of different additives during etch processes of dense and porous low-k with OES and QMS”, Microelectronic Engineering, Vol. 87, pp.337-342, 2010.
[28] S. B. Jin, J. S. Lee, Y. S. Choi, I. S. Choi, J. G. Han and M. Hori, “Scale-up approach for industrial plasma enhanced chemical vapor deposition processes and SiOx thin film technology”, Thin Solid Films, Vol. 547, pp. 193-197, 2013.
[29] T. Moiseev, D. Chrastina, G. Isella and C. Cavallotti, “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
[30] P. K-Nune, J. Perrin, J. Guillon and J. Jolly,” Mass spectrometry detection of radicals in SiH4-CH4-H2 glow discharge plasmas”, Plasma Sources Sci. Technol, Vol 9, pp. 250-259, 1995.
[31] Y. Inoue and O. Takai, “Properties of silicon oxide films deposited by plasma-enhanced CVD using organosilicon reactants and mass analysis in plasma”, Thin Solid Films, Vol. 341, pp.47-81, 1999.
[32] M. Takai, T. Nishimoto, M. Kondo and A. Matsuda, “Anomalous behavior of electron temperature in silane glow discharge plasmas”, Thin Solid Films, Vol. 390, pp. 83-87, 2001.
[33] H. Zhou, J. Watanabe, M. Miyake, A. Ogino, M. Nagatsu and R. Zhan, “Optical and mass spectroscopy measurements of Ar/CH4/H2 microwave plasma for nano-crystalline diamond film deposition”, Diamond & Related Materials, Vol. 16, pp. 675-678, 2007.
[34] T. Moiseev, D. Chrastina, G. Isella and C. Cavallotti, “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
[35] C. M. Chou, C. C. Chuang, C. H. Lin, C. J. Chung and J. L. He, “Plasma diagnostics for pulsed-dc plasma-polymerizing para-xylene using QMS and OES”, Surface & Coatings Technology, Vol. 205, pp. 4880-4885, 2011.
[36] P. Tristant, Z. Ding, Q. B. Trang, V. H. Hidalgo, J. L. Jauberteau, J. Desmaisonn and C. Dong, “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol 390, pp. 51–58, 2001.
[37] L. C. Hu , G. M. Ruan, T. C. Wei, C. J. Wang, Y. W. Lin, C. C. Lee, Y. Kawai and T. Li , “Comparative and integrative study of Langmuir probe and optical emission spectroscopy in a variable magnetic field electron cyclotron resonance chemical vapor deposition process used for depositing hydrogenated amorphous silicon thin films”, Thin Solid Films, Vol 570, pp.574-579, 2013.
[38] P. Tristant, Z. Ding, Q. B. Trang, V. H. Hidalgoa, J. L. Jauberteaua, J. Desmaisona and C. Dongb, “Microwave plasma enhanced CVD of aluminum oxide films: OES diagnostics and influence of the RF bias”, Thin Solid Films, Vol 390, pp. 51-58, 2001.
[39]蔡旺霖,「微晶矽薄膜製程於高頻電漿反應器之電漿診斷與模型研究」,私立中原大學,碩士論文,2010年。
[40]Hiden原廠操作手冊
指導教授 利定東 審核日期 2015-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明