參考文獻 |
[1] S. J. DeBoer, V. L. Dalal, G. Chumanov and R. Bartels,” Low temperature epitaxial silicon film growth using high vacuum electron-cyclotron-resonance plasma deposition”, Appl. Phys. Lett., Vol. 66, pp. 19-21, 1995.
[2] Y. Kawai, N. Itagaki, M. Koga and H. Muta, “Production of low electron temperature ECR plasma”, Surface & Coatings Technology, Vol 193, pp. 11-16, 2005.
[3] C. M. Chou, C. C. Chuang, C. H. Lin, C. J. Chung and J. L. He, “Plasma diagnostics for pulsed-dc plasma-polymerizing para-xylene using QMS and OES”, Surface & Coatings Technology, Vol 205, pp. 4880-4885, 2011.
[4]B. Chapman, Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[5]羅正忠,半導體製程技術導論,歐雅出版社,2006年
[6] M. A. Liberman and A. J. Lichtenberg, Plasma Discharges and Material Processing 2nd, A John Wiley & Sons, Inc Press, 2005.
[7] M. Shindo, S. Hiejima, Y. Ueda, S. Kawakami, N. Ishii and Y. Kawai, “Parameters measurement of ECR C4F8/Ar plasma”, Thin Solid Films, Vol 345, pp. 130-133, 1990.
[8] J. A. Venables, “Nucleation and growth of thin films”, Rep. Prog. Phys., Vol 47, pp.399-459, 1984.
[9] K. Reichelt, “Nucleation and growth of thin films”, Vacuum, Vol 38, pp.1083-1099, 1988.
[10]陳一塵,薄膜物理課程講義,桃園市,國立中央大學,民國103年。
[11] 施敏,半導體元件物裡與製作技術, 第二版,黃調元譯,新竹市,國立交通大學出版社,民國90年。
[12] C. C. Tsai, G. B. Anderson and R. Thompson, “Low temperature growth of epitaxial and amorphous silicon in a hydrogen-diluted silane plasma”, Journal of Non-Crystalline Solids, Vol 137&138, pp. 673—676, 1991.
[13] S. J. DeBoer, V. L. Dalal, G. Chumanov and R. Bartels, “Low temperature epitaxial silicon film growth using high vacuum electron-cyclotron-resonance plasma deposition”, Appl. Phys. Lett., Vol. 66, pp. 19, 1995.
[14] K. Sasaki, H. Tomoda and T. Takada, “Etching action by atomic hydrogen and low temperature silicon epitaxial growth on ECR plasma CVD”, Vacuum, vol. 51, No. 4, pp. 537-541, 1998.
[15] J. Platen, B. Selle, I. Sieber, S. Brehme, U. Zeimer and W. Fuhs, “Low-temperature epitaxial growth of Si by electron cyclotron resonance chemical vapor deposition”, Thin Solid Films, Vol. 381, pp. 22-30, 2001.
[16] Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azuma and H. Shirai, “ Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp.256-260, 2001.
[17] A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol. 337, pp.1-6, 1999.
[18] A. Matsuda, M. Takai, T. Nishimoto and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, Vol.78, pp.3-26, 2003.
[19] A. Matsuda. “Thin-Film Silicon —Growth Process and Solar Cell Application”, J.Japan Apply Physics, Vol 43, pp. 7909–7920, 2004.
[20] Y. Ruohe and L. Kuixun, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, Journal of Shantou University, Vol. 13, pp. 16-19, 1997.
[21] W. M. M. Kessels, M. C. M. van de Sanden and D. C. Schram, “Film growth precursors in a remote SiH4 plasma used for high-rate deposition of hydrogenated amorphous silicon”, J. Vac. Sci. Technol. A, Vol. 18, pp. 5-15, 2000.
[22] E. Camps, F. Becerril, S. Muhl, O. Alvarez-Fregoso and M. Villagr´an, “Microwave plasma characteristics in steel nitriding process”, Thin Solid Films, Vol.373, pp. 293-298, 2000.
[23] M. Takai, T. Nishimoto, M. Kondo and A. Matsuda, “Anomalous behavior of electron temperature in silane glow discharge plasmas”, Thin Solid Films, Vol 390, pp. 83-87, 2001.
[24] A. Matsuda, M. Takai, T. Nishimoto and M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials &Solar Cells, Vol 78, pp. 3–26, 2003.
[25] H. Zhou, J. Watanabe, M. Miyake, A. Ogino, M. Nagatsu and R. Zhan, “Optical and mass spectroscopy measurements of Ar/CH4/H2 microwave plasma for nano-crystalline diamond film deposition”, Diamond & Related Materials, Vol. 16, pp.675-678, 2007.
[26] R. Barni, S. Zanini and C. Riccardi, “Diagnostics of reactive RF plasmas”, Vacuum, Vol. 82, pp. 217-219, 2008.
[27] S. Zimmermann, N. Ahner, F. Blaschta, M. Schaller, H. Rulke, S.E. Schulz and T. Gessner, “Analysis of the impact of different additives during etch processes of dense and porous low-k with OES and QMS”, Microelectronic Engineering, Vol. 87, pp.337-342, 2010.
[28] S. B. Jin, J. S. Lee, Y. S. Choi, I. S. Choi, J. G. Han and M. Hori, “Scale-up approach for industrial plasma enhanced chemical vapor deposition processes and SiOx thin film technology”, Thin Solid Films, Vol. 547, pp. 193-197, 2013.
[29] T. Moiseev, D. Chrastina, G. Isella and C. Cavallotti, “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
[30] P. K-Nune, J. Perrin, J. Guillon and J. Jolly,” Mass spectrometry detection of radicals in SiH4-CH4-H2 glow discharge plasmas”, Plasma Sources Sci. Technol, Vol 9, pp. 250-259, 1995.
[31] Y. Inoue and O. Takai, “Properties of silicon oxide films deposited by plasma-enhanced CVD using organosilicon reactants and mass analysis in plasma”, Thin Solid Films, Vol. 341, pp.47-81, 1999.
[32] M. Takai, T. Nishimoto, M. Kondo and A. Matsuda, “Anomalous behavior of electron temperature in silane glow discharge plasmas”, Thin Solid Films, Vol. 390, pp. 83-87, 2001.
[33] H. Zhou, J. Watanabe, M. Miyake, A. Ogino, M. Nagatsu and R. Zhan, “Optical and mass spectroscopy measurements of Ar/CH4/H2 microwave plasma for nano-crystalline diamond film deposition”, Diamond & Related Materials, Vol. 16, pp. 675-678, 2007.
[34] T. Moiseev, D. Chrastina, G. Isella and C. Cavallotti, “Threshold ionization mass spectrometry in the presence of excited silane radicals”, J. Phys. D: Appl. Phys. Vol. 42, pp. 5-10, 2009.
[35] C. M. Chou, C. C. Chuang, C. H. Lin, C. J. Chung and J. L. He, “Plasma diagnostics for pulsed-dc plasma-polymerizing para-xylene using QMS and OES”, Surface & Coatings Technology, Vol. 205, pp. 4880-4885, 2011.
[36] P. Tristant, Z. Ding, Q. B. Trang, V. H. Hidalgo, J. L. Jauberteau, J. Desmaisonn and C. Dong, “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol 390, pp. 51–58, 2001.
[37] L. C. Hu , G. M. Ruan, T. C. Wei, C. J. Wang, Y. W. Lin, C. C. Lee, Y. Kawai and T. Li , “Comparative and integrative study of Langmuir probe and optical emission spectroscopy in a variable magnetic field electron cyclotron resonance chemical vapor deposition process used for depositing hydrogenated amorphous silicon thin films”, Thin Solid Films, Vol 570, pp.574-579, 2013.
[38] P. Tristant, Z. Ding, Q. B. Trang, V. H. Hidalgoa, J. L. Jauberteaua, J. Desmaisona and C. Dongb, “Microwave plasma enhanced CVD of aluminum oxide films: OES diagnostics and influence of the RF bias”, Thin Solid Films, Vol 390, pp. 51-58, 2001.
[39]蔡旺霖,「微晶矽薄膜製程於高頻電漿反應器之電漿診斷與模型研究」,私立中原大學,碩士論文,2010年。
[40]Hiden原廠操作手冊
|