博碩士論文 102323002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.144.99.134
姓名 鄭名翔(Ming-hsiang Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 6061鋁合金於累進式背擠製成型研究
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計
★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究★ 旋轉鍛造螺旋齒輪製程分析
★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析★ 以有限元素法與反應曲面法分析增量式板金成形
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計★ 以有限元素法與反應曲面法分析兩點增量成形
★ 引伸成形加工問題之有限元素分析★ 應用流函數法分析軸對稱熱擠製加工問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由劇烈塑性變形(Severe plastic deformation, SPD)方法達到超細晶粒(Ultrafine-grained, UFG)材料已被廣泛研究,本文採取由Fatemi-Varzaneh[20]等人提出的累進式背擠製(Acumulative back extrusion, ABE)於室溫對6061鋁合金加工。透過實驗與模擬,搭配不同的沖頭比(Deformation ratio,DR)與內沖頭行程(Die stroke,DS),並配合硬度、微觀結構與有限元素模擬分析,探討ABE擠製過程的機制,與不同實驗參數造成的效應。經由有限元素模擬分析與實驗結果比較獲得良好的一致性,DR與DS會影響材料加工硬化與硬度均勻程度的變化,而本研究中能夠產生奈米等級的晶粒,但大部分晶界仍保持在低角度,顯示在仍無法達到超細晶粒的要求。
摘要(英) To reach the ultrafine-grained(UFG) material from severe plastic deformation(SPD) method has been widely investigated.The present work used the AA60
61 in the room temperture processing of accumulative back extrusion(ABE) that
was one of the SPD techniqus was originally proposed by Fatemi-Varzaneh[20].
To investigate the mechanics of the processing of the ABE using the experi-
ment and the finite element method(FEM) with different deformatio ratio(DR),
Die stroke(DS) and pass number.Then,the microhardness and the microstructure
were utilized to study with the effective strain(ES) and shear strain(ES). Compa
ring the FEM and experimental results showed good agreement in the ES conto-
ur and microhardness. The DR and DS both has the great effect in the mechanic-
al properties of the workpiece.Althrough the part the grain size has high ES thro-
ugh one to three pass all can reach the nanoscale in the microstructure result,the
most of grain boundaries still remained low anglar grain boundry.It means the high stacking fault energy of AA6061 through ABEed processing at room temp-
erture still can’t satisfied with the UFG.
關鍵字(中) ★ 6061
★ 擠製
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2文獻回顧 3
1.2.1累進式背擠製 3
1.3研究目的與動機 7
第二章 基本概要 8
2.1鋁合金簡介 8
2.2對於6061系列機械性質影響的合金成分 10
2.3超細晶粒(UFG) 11
2.4劇烈塑性變形 13
2.5電子背向繞射 14
2.6晶粒細化機制 16
2.6.1回復 16
2.6.2再結晶 18
2.6.3晶粒分割 21
第三章 實驗設備與方法 23
3.1實驗設備 23
3.1.1累進式背擠製模具介紹 23
3.2實驗方法 23
3.2.1實驗參數 23
3.2.2試片材料 24
3.2.3熱處理 24
3.2.4潤滑條件 24
3.3實驗步驟 25
3.4實驗量測 26
3.4.1硬度試驗 26
3.4.2硬度均勻性指數 27
3.4.3拉伸試驗 28
3.4.4光學顯微鏡觀測(OM) 29
3.4.5電子背相散射繞射觀測(EBSD) 29
第四章 實驗結果與討論 31
4.1 ABE製程成型機制探討 31
4.1.1概要 31
4.1.2有限元素模擬設定 31
4.1.3有限元素模擬分析 33
4.1.4模擬結果與OM觀測比較 39
4.2 ABE製程對硬度分布影響 41
4.2.1概要 41
4.2.2微硬度試驗分析 41
4.2.3實驗與模擬結果討論 45
4.3 ABE製程對微結構探討 48
4.3.1概要 48
4.3.2 OM觀測結果 48
4.3.3 EBSD觀測加工前胚料 48
4.3.4 EBSD觀測經ABE加工胚料 49
4.3.5 EBSD觀測經熱處後之加工胚料 50
第五章 結論與建議 52
5.1結論 52
5.2建議 53
參考文獻 55
附件…………………………………………………………………………...111
參考文獻 [1] R. Z. Valiev, "Structure and mechanical properties of ultrafine-grained metal," Materials Science and Enginnering:A, Vols. 234-236, pp. 59-66, 8 1997.
[2] Y. Huang and T. G. Langdon, "Advances in ultrafine-grained materials," Materialstoday, vol. 16, pp. 85-93, 3 2013.
[3] S. Fatemi-Varzaneh and . A. Zarei-Hanzaki, "Accumulative back extrusion (ABE) processing as a novel bulk deformation method," Materials Science and Engineering A, vol. 504, pp. 104-106, 2009.
[4] M. Reihanian, R. Ebrahimi, M. Moshksar, D. Terada and N. Tsuji, "Microstructure quantification and correlation with flow stress of ultrafine grained commercially pure Al fabricated by equal channel angular pressing (ECAP)," Materials Characterization, vol. 59, pp. 1312-1323, 9 2008.
[5] M. Richert, Q. Liu and N. Hansen, "Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression," Materials Science and Engineering: A, vol. 260, pp. 275-283, 2 1999.
[6] Y. Beygelzimer, V. Varyukhin, V. Synkov and D. Orlov, "Useful properties of twist extrusion," Materials Science and Engineering: A, vol. 503, pp. 14-17, 3 2009.
[7] A. P. Zhilyaev and T. G. Langdon, "Using high-pressure torsion for metal processing: Fundamentals and applications," Progress in Materials Science, vol. 53, pp. 893-979, 8 2008.
[8] H. Alihosseinia, G. Faraji , A. Dizaji and K. Dehghani, "Characterization of ultra-fine grained aluminum produced by accumulative back extrusion (ABE)," Materials Characterization, vol. 38, pp. 14-21, 6 2012.
[9] N. Haghdadi, A. Zarei-Hanzaki and D. Abou-Ras, "Microstructure and mechanical properties of commercially pure aluminum processed by accumulative back extrusion," Materials Science & Engineering A, vol. 584, pp. 73-81, 2013.
[10] P. Shaterani, A. Zarei-Hanzaki, S. Fatemi-Varzaneh and S. Hassas-Irani, "The second phase particles and mechanical properties of 2124 aluminum alloy processed by accumulative back extrusion," Materials and Design, vol. 58, pp. 535-542, 2014.
[11] S. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Naderi and A. A. Roostaei, "Deformation homogeneity in accumulative back extrusion processing of AZ31 magnesium alloy," Journal of Alloys and Compounds, vol. 507, pp. 207-214, 2010.
[12] S. Fatemi-Varzaneh , A. Zarei-Hanzaki and S. Izadi, "Shear deformation and grain refinement during accumulative back extrusion of AZ31 magnesium alloy," J Mater Sci, vol. 46, pp. 1937-1944, 2011.
[13] G. Faraji, H. Jafarzadeh, H. Jeong, M. Mashhadi and H. Kim, "Numerical and experimental investigation of the deformation behavior during the accumulative back extrusion of an AZ91 magnesium alloy," Materials and Design, vol. 35, pp. 251-258, 2012.
[14] N. Haghdadi, A. Zarei-Hanzaki, D. Abou-Ras, M. Maghsoudi, A. Ghorbani and M. Kawasaki, "An investigation into the homogeneity of microstructure, strain pattern and hardness of pure aluminum processed by accumulative back extrusion," Materials Science & Engineering A, vol. 595, pp. 179-187, 2014.
[15] P. Berbon, N. Tsenev, R. Valie, M. Furukawa, Z. Horita, M. Nemoto Nemoto and T. Langond, "Fabrication of bulk ultrafine-grained materials through intense plastic straining," Metall. and Mater. Trans. A, vol. 29A, p. 2237, 1998.
[16] M. Kawasaki and T. G. Langdon, "Principles of superplasticity in ultrafine-grained materials," Journal of Materials Science, vol. 42, pp. 1782-1796, 3 2007.
[17] 王約翰, "鋁合金材料晶相分析最佳化研究", 正修科技大學碩士論文, 2010.
[18] 鄭存閔, "噴覆成形語連續鑄造鋁合金之塑性加工性及機械性質的研究", 國立成功大學碩士論文, 7, 2004.
[19] M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, "Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE," Scripta Materialia, vol. 36, p. 681, 1997.
[20] M. Mabuchi, H. Iwasaki and K. Higashi, "Microstructure and mechanical properties of 5056 Al alloy processed by Equal-channel angular extrusion," Nanostructured Mater, vol. 8, p. 1105, 1997.
[21] V. M. Segal, "Materials processing by simple shear," Mater. Sci. and Eng. A, vol. 197, p. 157, 1995.
[22] R. Z. Valiev, R. Islamgaliev and I. Alexandrov, "Bulk nanostructured materials from severe plastic deforemation," Progress in Materials Science, vol. 45, p. 103, 2003.
[23] 李明富, "利用 ECAE 方法發展次微米晶粒材料之研究", 中山大學碩士論文, pp. 5-6, 1997.
[24] A. Korbel and M. Richert, "Formation of shear bands during cyclic deformation of aluminum," Acta Metall, vol. 33, pp. 1971-1978, 1985.
[25] M. Mabuchi, K. Kubota and K. Higashi, "New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bar," Mater Trans JIM, vol. 36, p. 1249, 1995.
[26] R. Schwarz and W. Johnson, "Formation of an Amorphous Alloy by Solid-State Reaction of the Pure Polycrystalline Metals," Phys. Rev. Lett., vol. 51, pp. 415-418, 1983.
[27] 孫佩鈴, "純鋁經大量塑性變形生成細晶粒之研究", 中山大學博士論文, pp. 28-32, 1999.
[28] 廖忠賢與黃志青, "科學新知", p. 43, 1998.
[29] V. Randle, "Microstructure Determination and Its Applications," The Institute of Metals, 1992.
[30] 周詩博, "冷軋鋁箔之再結晶組織與機械性質", 中山大學碩士論文, pp. 11-12, 2002.
[31] F.J. Humphreys and M. Hatherly, "Recrystallization and related annealing phenomenon".
[32] Taku Sakai, Andrey Belyakov, Rustam Kaibyshev, Hiromi Miura and John J. Jonas, "Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions," Progress in Materials Science, pp. 103-207, 2014.
[33] 林敬量, "商業純鋁在不同溫度經平變硬變後之組織研究" 國立中山大學碩士論文, 2005.
[34] 丁仕旋, "商用純鋁在50%軋延量下之溫加工變形組織" 國立中山大學碩士論文, 2003.
[35] 王郁雲, "變形溫度對等徑轉角擠製純鋁之微結構影響" 國立中山大學碩士論文, 2003.
[36] D. A. Hughes and A. Godfrey, "Dislocation structures formed during hot and cold working," Matels & Material Society, p. 23, 1998.
[37] B. Bay, N. Hansen,, A. Huhges and D. Kuhlmann-Wilsdorf, "Evolution of f.c.c. deformation structure in polyslip," Acta Matell. Mater., p. 205, 1992.
[38] 陳弘志, "A1070在累進式背擠製下的機械性質與微結構之研究", 中央大學碩士論文, 2014.
[39] V. Patil Basavaraj, Uday Chakkingal and T. Prasanna Kumar, "Study of channel angle influence on material flow and strain inhomogeneity in equal channel angular pressing using 3D finite element simulation," Journal of Materials Processing Technology, vol. 209, pp. 89-95, 2009.
[40] A. B557M-84, "Standard methods of tension testing of wrought and cast aluminium and magnesium alloy product," Annual Book of ASTEM Standards 02.02.,, pp. 466-476, 1995.
[41] R. Hosford and R. Caddle, "Metal Forming Mechanics and Mrtallurgy".Inc.A Division of Simom & Schuster Englewood Cliffs, NJ 07632, 1983.
[42] 洪嘉駿, "以鍛粗加工實驗驗證變分上界限法" 中央大學碩士論文, 2007.
[43] 蕭勝元, "金屬之加工軟化與退火硬化", 大同大學碩士論文, p. 14, 2007.
指導教授 葉維磬(Wei-ching Yeh) 審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明