博碩士論文 102323074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.146.35.53
姓名 陳定穎(Ting-ying Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 H∞ 連續模糊系統之控制設計-寬鬆穩定條件∞
(SOS-based H∞ Fuzzy Controller Desging-Relaxation Method)
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ T-S模糊模型之建構、強健穩定分析與H2/H∞控制★ 廣義H2模糊控制-連續系統 線性分式轉換法
★ 廣義模糊控制-離散系統 線性分式轉換法★ H∞模糊控制-連續系統 線性分式轉換法
★ H∞模糊控制—離散系統 線性分式轉換法★ 強健模糊動態輸出回饋控制-Circle 與 Popov 定理
★ 強健模糊觀測狀態回饋控制-Circle與Popov定理★ H_infinity 取樣模糊系統的觀測型控制
★ H∞取樣模糊系統控制與觀測定理★ H-ihfinity取樣模糊系統動態輸出回饋控制
★ H∞模糊系統控制-多凸面法★ H∞模糊系統控制-寬鬆變數法
★ 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測★ 寬鬆耗散性模糊控制-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 李亞普諾夫能量函數V (x)對時間t微分會產生Q(x)微分項的
過程,為了要避免這個複雜的問題,則引入尤拉齊次多項式定理,本
論文主要在研究在連續模糊控制系統下的非二次穩定(Non-quadratic
stability),且加入H1性能指標的觀念,亦即非二次穩定李亞普諾
夫(Lyapunov function)能量函數V (x) = xT adj(Qz(x))x,而藉由尤拉
齊次多項式定理(Euler′s Theorem for Homogeneous Functions)可導
出H1控制之李亞普諾夫不等式檢測穩定矩陣,輔以平方和(Sum of
square)去檢驗其連續模糊系統之穩定條件,最後去模擬例子,來證明
此方法之正確性
i
摘要(英) Lyapunov energy function V (x) for time di erential will gener-
ate Q(x) process derivative term, in order to avoid this complex is-
sue, the lead to Euler′s homogeneous polynomial theorem, this the-
sis research in continuous fuzzy control system nonquadratic stable
(Non-quadratic stability), and added performance concept of H1 ,
namely non-quadratic Lyapunov stability (Lyapunov function) energy
function V (x) = xT adj(Qz(x))x , and by Euler homogeneous poly-
nomial Theorem (Euler′s Theorem for Homogeneous Functions) can
be exported H1 control of Lyapunov inequality detection stabilizing
matrix, supplemented square and (Sum of square) to test its stability
conditions of continuous fuzzy systems, and nally to simulate exam-
ple, to prove the correctness of this approach
ii
關鍵字(中) ★ 平方和
★ Takagi-Sugeno模糊系 統
★ H1控制
★ 非二次穩定
★ 參數相依齊次多項式
★ 尤拉齊次多項式定理
關鍵字(英) ★ Sum of squares
★ T-S fuzzy systems
★ H1 control
★ Non-quadratic stability
★ HPPD
★ Euler′s Theorem for Homogeneous Functions
論文目次 中文摘要.......................................................................................... i
英文摘要.......................................................................................... ii
謝誌................................................................................................. iii
目錄................................................................................................. iv
圖目錄.............................................................................................. vi
一、背景介紹..................................................................... 1
1.1 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . 3
1.3 論文結構. . . . . . . . . . . . . . . . . . . . . . . 5
1.4 符號標記. . . . . . . . . . . . . . . . . . . . . . . 6
1.5 預備定理. . . . . . . . . . . . . . . . . . . . . . . 8
二、基礎定理..................................................................... 9
2.1 H1 控制定理介紹. . . . . . . . . . . . . . . . . . . 9
2.2 尤拉齊次多項式定理(Euler′s homogeneity theorem) 10
2.3 李亞普諾夫定理(Lyapunov theorem) . . . . . . . . 14
2.4 蕭轉換定理(Schur complement) . . . . . . . . . . . 14
三、連續系統架構..............................................................16
3.1 連續系統架構介紹. . . . . . . . . . . . . . . . . . 16
3.2 連續模糊系統控制加入寬鬆條件之檢測條件. . . . . 17
3.3 H1連續模糊系統控制加入寬鬆條件之檢測條件. . . 22
3.4 建模技巧. . . . . . . . . . . . . . . . . . . . . . . 27
四、平方和檢測條件..........................................................30
4.1 平方和檢驗法. . . . . . . . . . . . . . . . . . . . . 30
4.2 平方和檢驗法之控制連續模糊系統檢測條件. . . . . 33
4.3 平方和檢驗法之H1控制連續模糊系統檢測條件. . . 35
iv
五、Matlab電腦模擬.........................................................38
5.1 例題一. . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 例題二. . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 例題三. . . . . . . . . . . . . . . . . . . . . . . . . 47
六、結論與未來方向..........................................................52
6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 未來研究方向. . . . . . . . . . . . . . . . . . . . . 53
附錄一..............................................................................................54
A.1 波雅定理. . . . . . . . . . . . . . . . . . . . . . . 54
A.2 增加激發強度之冪次. . . . . . . . . . . . . . . . 54
A.3 波雅定理之穩定性檢測條件. . . . . . . . . . . . . 56
參考文獻 [1] T. Takagi and M. Sugeno. Fuzzy identi cation of systems and its
applications to modelling and control. IEEE Trans. Syst., Man,
Cybern., 15(1):116{132, January 1985.
[2] M. Sugeno and G.T. Kang. Structure identi cation of fuzzy
model. Fuzzy Set and Systems, 28:15{33, 1988.
[3] K. Tanaka and M. Sugeno. Stability analysis and design of fuzzy
control systems. Fuzzy Set and Systems, 45:135{156, 1992.
[4] W.M. Haddad and D.S. Bernstein. Explicit construction of
quadratic Lyapunov functions for the small gain, positive, cir-
cle and Popov theorems and their application to robust stability.
Part II: discrete-time theory. Int′l J. of Robust and Nonlinear
Control, 4:249{265, 1994.
[5] P.A. Parrilo. Structured Semide nite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. PhD thesis,
Caltech, Pasadena, CA., May 2000.
[6] S. Prajna, A. Papachristodoulou, and P. Parrilo. Introducing
SOSTOOLS: a general purpose sum of squares programming
solver. In Proc of IEEE CDC, pages 741{746, Montreal, Ca, July
2002.
[7] S. Prajna, A. Papachristodoulou, and et al. New developments on
sum of squares optimization and SOSTOOLS. In Proc. the 2004
American Control Conference, pages 5606{5611, 2004.
60
[8] A. Sala and C. Arino. Polynomial fuzzy models for nonlinear
control: A Taylor series approach. IEEE Trans. Fuzzy Systems,
17(6):1284{1295, December 2009.
[9] H. Ichihara. Observer design for polynomial systems using convex
optimization. In Proc. of the 46th IEEE CDC, pages 5347{5352,
New Orleans, LA, December 2007.
[10] J. Xu, K.Y. Lum, and et al. A SOS-based approach to resid-
ual generators for discrete-time polynomial nonlinear systems. In
Proc. of the 46th IEEE CDC, pages 372{377, New Orleans, LA,
December 2007.
[11] J. Xie, L. Xie, and Y. Wang. Synthesis of discrete-time nonlinear
systems: A SOS approach. In Proc. of the 2007 American Control
Conference, pages 4829{4834, New York, NY, July 2007.
[12] K. Tanaka, H. Yoshida, and et al. A sum of squares approach
to stability analysis of polynomial fuzzy systems. In Proc. of the
2007 American Control Conference, pages 4071{4076, New York,
NY, July 2007.
[13] K. Tanaka, H. Yoshida, and et al. Stabilization of polynomial
fuzzy systems via a sum of squares approach. In Proc. of the
22nd Int′l Symposium on Intelligent Control Part of IEEE Multi-
conference on Systems and Control, pages 160{165, Singapore,
October 2007.
[14] H. Ichihara and E. Nobuyama. A computational approach to
state feedback synthesis for nonlinear systems based on matrix
sum of squares relaxations. In Proc. 17th Int′l Symposium on
Mathematical Theory of Network and Systems, pages 932{937,
Kyoto, Japan, 2006.
61
[15] C.W.J. Hol and C.W. Scherer. Sum of squares relaxations for
polynomial semide nite programming. In Proc.of MTNS, pages
1{10, 2004.
[16] E. Kim and H. Lee. New approaches to relaxed quadratic stability
condition of fuzzy control systems. IEEE Trans. Fuzzy Systems,
8(5):523{534, October 2000.
[17] X.D. Liu and Q.L. Zhang. New approaches to H1 controller
designs based on fuzzy observers for T-S fuzzy systems via LMI.
Automatica, 39:1571{1582, June 2003.
[18] C.H. Fang, Y.S. Liu, S.W. Kau, L. Hong, and C.H. Lee. A new
LMI-based approach to relaxed quadratic stabilization of T-S
fuzzy control systems. IEEE Trans. Fuzzy Systems, 14(3):386{
397, June 2006.
[19] H.O. Wang, K. Tanaka, and M.F. Grin. An approach to fuzzy
control of nonlinear systems: stability and design issues. IEEE
Trans. Fuzzy Systems, 4(1):14{23, February 1996.
[20] M. Johansson, A. Rantzer, and K.-E. Arzen. Piecewise quadratic
stability of fuzzy systems. IEEE Trans. Fuzzy Systems, 7(6):713{
722, December 1999.
[21] G. Feng. Controller synthesis of fuzzy dynamic systems based on
piecewise Lyapunov functions. IEEE Trans. Circuits and Syst. I:
Fundamental Theory and Applications, 11(5):605{612, 2003.
[22] D. Sun G. Feng, C. Chen and Y. Zhu. H1 controller synthesis
of fuzzy dynamic systems based on piecewise Lyapunov functions
and bilinear matrix inequalities. IEEE Trans. Circuits and Syst.
I: Fundamental Theory and Applications, 13(1):94{103, 2005.
[23] T. M. Guerra and L. Vermeiren. LMI-based relaxed nonquadratic
stabilization conditions for nonlinear systems in the Takagi-
Sugeno′s form. Automatica, 40:823{829, 2004.
指導教授 羅吉昌(Lo, Ji-Chang) 審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明