博碩士論文 102323070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.146.35.53
姓名 謝宜哲(Yi-Che Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 H∞控制器與狀態回授估測器設計-齊次多項式平方和檢測法
(H∞ Controller and State Feedback Observer Design based on Homogeneous SOS)
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ T-S模糊模型之建構、強健穩定分析與H2/H∞控制★ 廣義H2模糊控制-連續系統 線性分式轉換法
★ 廣義模糊控制-離散系統 線性分式轉換法★ H∞模糊控制-連續系統 線性分式轉換法
★ H∞模糊控制—離散系統 線性分式轉換法★ 強健模糊動態輸出回饋控制-Circle 與 Popov 定理
★ 強健模糊觀測狀態回饋控制-Circle與Popov定理★ H_infinity 取樣模糊系統的觀測型控制
★ H∞取樣模糊系統控制與觀測定理★ H-ihfinity取樣模糊系統動態輸出回饋控制
★ H∞模糊系統控制-多凸面法★ H∞模糊系統控制-寬鬆變數法
★ 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測★ 寬鬆耗散性模糊控制-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要探討在連續時間下,考慮一加入干擾的非線性系統,再利用H∞性能指標來探討非線性系統的穩定性與性能影響,而我們藉由尤拉齊次定理分別推導出H∞控制系統與H∞狀態回授估測系統的李亞普諾夫檢測條件,因利用尤拉齊次多項式定理的關係,我們可以避免了李亞普諾夫函數V(x)對時間t微分所產生的Q(x)之微分項。

  最後,再將所得之李亞普諾夫函數經平方和檢測方法改寫為純量形式,以平方和檢測法去檢驗其系統之穩定性,藉此確保我們的閉迴路系統的穩定性與狀態回授估測器追蹤狀態的性能,在論文的第五章我們分別提供控制系統與狀態回授估測系統各2個數值分析的例子,來證明其有效性。
摘要(英) In this thesis, a polynomial nonlinear system, modelled by T-S fuzzy model with added disturbances, is studied. Based on non-quadratic, homogeneous Lyapunov function, both controller and observer are considered in the analysis where Euler′s homogeneous polynomial theorem is used to avoid the derivative term dot Q(x) that is seen in the existing papers.

After some background reviewed, we started with fuzzy system models established by Taylor series. To tackle the derivative Lyapunov dot Q(x) terms and the zero row structure in the input matrix B(x) in the existing papers, Euler homogeneous polynomial theory is applied to derive the stabilization condition in LMI formulation and then converted into SOS form so that SOSTOOLS is used to for synthesis analysis.

 Finally, Sum of Square is applied to solve for the Lyapunov Q(x) and controller/observer gains, thereby ensuring the stability of the closed-loop feedback system as well as the observed-state feedback control system. Several examples are provided in Chapter 5 to demonstrate the analysis is effective.
關鍵字(中) ★ 平方和
★ Takagi-Sugeno模糊系統
★ H∞ 控制
★ H∞觀測
★ 尤拉齊次多項式定理
★ 參數相依齊次多項式
關鍵字(英) ★ sum of squares
★ T-S fuzzy systems
★ H∞ control
★ H∞ observer
★ Euler’s theorem for homogeneous function
★ HPPD
論文目次 一、 背景介紹..................................................................... 1
1.1 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 論文結構 . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 符號標記 . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 預備定理 . . . . . . . . . . . . . . . . . . . . . . . 6
二、 基礎定理介紹.............................................................. 8
2.1 H1性能優化定理 . . . . . . . . . . . . . . . . . . . 8
2.2 尤拉齊次多項式定理(Euler′s homogeneity theorem) 9
2.3 李亞普諾夫定理(Lyapunov theorem) . . . . . . . . 11
2.4 蕭轉換定理(Schur complement) . . . . . . . . . . . 13
2.5 建模技巧 . . . . . . . . . . . . . . . . . . . . . . . 14
三、 連續系統架構與檢測條件............................................ 17
3.1 連續系統架構介紹 . . . . . . . . . . . . . . . . . . 17
3.2 H1連續模糊閉迴路控制系統之檢測條件 . . . . . . 18
3.3 H1連續模糊閉迴路觀測系統之檢測條件 . . . . . . 21
四、 平方和檢測條件 .......................................................... 27
4.1 平方和檢驗法 . . . . . . . . . . . . . . . . . . . . . 27
4.2 平方和檢驗法之連續模糊閉迴路控制系統檢測條件 . 30
ix
4.3 平方和檢驗法之H1控制連續模糊系統檢測條件 . . . 31
4.4 平方和檢驗法之連續模糊閉迴路觀測系統檢測條件 . 32
4.5 平方和檢驗法之H1觀測連續模糊系統檢測條件 . . . 33
五、 Matlab電腦模擬 ......................................................... 35
5.1 例題一 . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 例題二 . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 例題三 . . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 例題四 . . . . . . . . . . . . . . . . . . . . . . . . 53
六、 結論與未來方向 .......................................................... 60
6.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 未來研究方向 . . . . . . . . . . . . . . . . . . . . . 61
文獻 ................................................................................................. 63
參考文獻 [1] K. Tanaka, H. Yoshida, H.Ohtake and H.O.Wang, A sum-ofsquares approach to modeling and control nonlinear dynamical
systems with polynomial fuzzy systems ," IEEE Transactions on
fuzzy systems vol. 17, pp.911{922, August. 2009.
[2] T. Takagi and M. Sugeno, Fuzzy identi cation of systems and its
applications to modelling and control," IEEE Trans. Syst., Man,
Cybern., vol. 15, no. 1, pp. 116{132, Jan. 1985.
[3] M. Sugeno and G. Kang, Structure identi cation of fuzzy
model," Fuzzy Set and Systems, vol. 28, pp. 15{33, 1988.
[4] K. Tanaka and M. Sugeno, Stability analysis and design of fuzzy
control systems," Fuzzy Set and Systems, vol. 45, pp. 135{156,
1992.
[5] W. Haddad and D. Bernstein, Explicit construction of quadratic
Lyapunov functions for the small gain, positive, circle and
Popov theorems and their application to robust stability. Part II:
discrete-time theory", Int′l J. of Robust and Nonlinear Control,
vol. 4, pp. 249{265, 1994.
[6] H.O. Wang and K. Tanaka, Parallel Distributed Compensation
of Nonlinear Systems by Takagi-Sugeno Fuzzy Model", United
Technologies Research Center, pp. 531{538, 1995.
[7] M. Johansson, A. Rantzer, and K.E. Arzen, Piecewise
quadratic stability of fuzzy systems", IEEE Trans. Fuzzy Systems,
7(6):713{ 722, December 1999.
[8] G. Feng, Controller synthesis of fuzzy dynamic systems based on
piecewise Lyapunov functions", IEEE Trans. Circuits and Syst I:
Fundamental Theory and Applications, 11(5):605{612, 2003.
[9] D. Sun G. Feng, C. Chen and Y. Zhu, H1 controller synthesis
of fuzzy dynamic systems based on piecewise Lyapunov functions
63
and bilinear matrix inequalities", IEEE Trans. Circuits and Syst.
I: Fundamental Theory and Applications, 13(1):94{103, 2005.
[10] T. M. Guerra and L. Vermeiren, LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the
TakagiSugeno′s form", Automatica, 40:823{829, 2004.
[11] B. C. Ding, H. Sun, and P. Yang, Further studies on LMI-based
relaxed stabilization conditions for nonlinear systems in Takagisugeno′s form", Automatica, 43:503{508, 2006.
[12] X. Chang and G. Yang, A descriptor representation approach
to observer-based H∞ control synthesis for discrete-time fuzzy
systems", Fuzzy Set and Systems, 185(1):38{51, 2010.
[13] B. Ding , Stabilization of Takagi-Sugeno model via nonparallel distributed compensation law", IEEE Trans. Fuzzy Systems,
18(1):188{ 194, February 2010.
[14] A. Jaadari, J. Pan, S. Fei and T. M. Guerra , Nonquadratic
stabilization of continuous T-S fuzzy models: LMI solution for local approach", IEEE Trans. Fuzzy Systems, 20(3):594{602, 2012.
[15] J. B. Park, D. H. Lee and Y. H. Joo , Approaches to extended
non-quadratic stability and stabilization conditions for discretetime Takagi-Sugeno fuzzy systems", Automatica, 47(3):534{538,
2011.
[16] John C. Doyle, Keith Glover , State-Space Solutions to Standard H2
and H1 Control Problems", IEEE Trans. on Automatic
Control, vol.34 no.8 1989.
[17] P. Parrilo, Structured Semide nite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization. Caltech,
Pasadena, CA.: PhD thesis, 2000.
[18] S. Prajna, A. Papachristodoulou, and P. Parrilo, Introducing
SOSTOOLS: a general purpose sum of squares programming
solver," in Proc of IEEE CDC, Montreal, Ca, Jul. 2002, pp. 741{
746.
[19] S. Prajna, A. Papachristodoulou , New developments on sum of
squares optimization and SOSTOOLS," in Proc. the 2004 American Control Conference, 2004, pp. 5606{5611.
64
[20] H. Ichihara , Observer design for polynomial systems using
convex optimization," in In Proc. of the 46th IEEE CDC, pages
5347{5352, New Orleans, LA, December 2007.
[21] J. Xu, K. Y. Lum, A SOS-based approach to residual generators
for discrete-time polynomial nonlinear systems," in In Proc. of
the 46th IEEE CDC, pages 372{377, New Orleans, LA, December
2007.
[22] J . Xie, L. Xie, and Y. Wang , New developments on sum of
squares optimization and SOSTOOLS," in In Proc. of the 2007
American Control Conference, pages 4829{4834, New York, NY,
July 2007.
[23] K. Tanaka, H. Yoshida, A sum of squares approach to stability
analysis of polynomial fuzzy systems," in In Proc. of the 2007
American Control Conference, pages 4071{4076, New York, NY,
July 2007.
[24] K. Tanaka, H. Yoshida, Stabilization of polynomial fuzzy systems via a sum of squares approach," in In Proc. of the 22nd Int′l
Symposium on Intelligent Control Part of IEEE Multi-conference
on Systems and Control, pages 160{165, Singapore, October 2007.
[25] H. Ichihara and E. Nobuyama , A computational approach to
state feedback synthesis for nonlinear systems based on matrix
sum of squares relaxations," in In Proc. 17th Int′l Symposium
on Mathematical Theory of Network and Systems, pages 932{937,
Kyoto, Japan, 2006.
[26] C. W. J. Hol and C. W. Scherer, Sum of squares relaxations for polynomial semide nite programming," in In Proc.of
MTNS,pages 1{10, 2004.
[27] P. A. Parrilo, ructured Semide nite Programs and Semialgebraic Geometry Methods in Robustness and Optimization, PhD
thesis, Caltech, Pasadena, CA , May 2000.
[28] K . Tanaka, H. Yoshida, H. Ohtake and H. O. Wang, A sum
of squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,IEEE Trans. Fuzzy
Systems," 17(4):911{922, August 2009.
65
[29] Yu-Tse Lin and Ji-Chang Lo, SOS-based Fuzzy Controller Design -Homogeneous Polynomial Approach," 2014.
[30] Wei-sheng Chang and Ji-Chang Lo, SOS-Based Fuzzy Observer
Dsigns -Homogeneous Polynomial Approach," 2014.
[31] C. Ebenbauer, J. Renz, and F. Allgower, Polynomial Feedback
and Observer Design using Nonquadratic Lyapunov Functions,
IEEE Conferece on Decision and Control, 2005
[32] Sala, Antonio, and C. Ario. "Polynomial fuzzy models for nonlinear control: a Taylor series approach." Fuzzy Systems, IEEE
Transactions on 17.6 : 1284-1295, 2009.
[33] S. Prajna, A. Papachristodoulou and F. Wu, Nonlinear control
synthesis by sum of squares optimization: A Lyapunov-based Approach," in Proc. 5th Asian Control Conference, 2004, pp. 157{
165.
[34] Dan Zhao and Jian-liang Wang , Robust static output feedback
design for polynomial nonlinear systems", Robust Nonlinear Control 2010:1637-1654, November 2009.
[35] Huang Wen-Chao, Sun Hong-Fei and Zeng Jian-Ping , Robust
Control Synthesis of Polynomail Nonlinear Systems Using Sum of
Squares Technique", Acta Automatica Sinica, June 2013.
[36] Kazuo Tanaka , Polynomial Fuzzy Observer Designs A Sum-ofSquares Approach", IEEE Transactions on Systems, 2012.
指導教授 羅吉昌(Lo, Ji-Chang) 審核日期 2015-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明