博碩士論文 102323039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.191.130.149
姓名 曾泓文(Hun-weng Tseng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱處理條件對鈦合金SP-700磨耗特性與腐蝕行為之影響
(Effect of heat treatment on wear and corrosion behavior of SP-700 Ti alloy)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 藉由磨耗與腐蝕實驗,評估不同熱處理對SP-700鈦合金之微結構、抗磨性與耐蝕性之影響。熱處理方式為於850℃固溶後以水淬、空冷、爐冷等不同冷卻速率降至室溫,於500℃再進行1小時時效處理。結果顯示水淬合金之微結構由硬脆初析αp相、α’’相與軟韌βr相所組成,空冷與爐冷合金之微結構皆形成硬脆初析αp相、α相與軟韌βr相,此兩者差別在於空冷合金微結構包含較細緻α相,而爐冷合金則含有較粗大α相。三者硬度為空冷合金最高,其次為爐冷合金,最軟為水淬合金。經時效處理後,由於α’’相與βr析出細小α+β平衡相,合金硬度皆有所提升。
磨耗結果顯示SP-700鈦合金磨耗形式受硬度影響。當材料硬度越高時,其抗磨性越佳。水淬合金由於硬度最低,於磨耗過程中容易產生塑性變形與微裂痕,而導致表面破碎且表面起伏劇烈;硬度稍高的空冷與爐冷合金不易有塑性變形或微裂痕產生,故為線性磨耗溝,表面起伏較小;時效過後的合金,合金硬度皆明顯大幅提升,不易有塑性變形或微裂痕產生,故會形成較淺之線性磨耗溝,且表面起伏最小。
腐蝕研究發現表面α相的多寡與顆粒大小會影響到腐蝕行為的表現,β穩定元素能夠提升抗蝕性,由於α相含有較少β穩定元素,故會增加材料的活性與腐蝕速率。水淬合金會在腐蝕過程中與表層形成鈍化層保護內部,其抗蝕性較佳;空冷與爐冷合金因α相形貌較為粗大且無形成鈍化層保護內部,相對於水淬合金抗蝕性稍差;時效過後,因會析出α相,表面活性與腐蝕速率皆因此增加,故抗蝕性皆差。
摘要(英) The effects of different heat treatments on micro-structure, wear and corrosion behavior of SP-700 titanium alloy have been investigated. The process of heat treatments is to cool the temperature by different cooling rate like quench, air-cooling, and furnance-cooling from solution treatment temperature at 850 to room temperature prior to aging. In the process of different cooling rate after solution treatment, the result shows that the structure of the quench cooling alloy forms the hardest αp, hard α′′ and soft βr phase. The structure of the air cooling alloy forms the hardest αp and soft βr phase, having the fine morphology. The structure of the furnace-cooling alloy forms the hardest αp and soft βr phase, having the coarse morphology. The alloy strength from high to low is air cooling, furnace cooling, and quench cooling. After aging process, α′′ and βr phase transform into stable α+b phase which makes alloy strength increase.
The wear test shows that it attributes the tribology types of SP-700 alloy to titanium alloy strength. The surface of quench alloy having low strength shows the fracture caused by plastic deformation and micro crack during wear test. The surface of aic-cooling and furnance-cooling alloy having higher strength shows sharp and light ditch. After aging, The surface aging alloy shows sharp and light ditch. The wear resist becomes better with increasing strength.
The corrosion test shows that the measure and size of α phase affect the behaviour of the tafel curve bacause α phase lack β-stabilizer element which can improve the protection from corrosion. Quench alloy forms a passive film to protect the interior of alloy. However, air-cooling and furnance-cooling alloy have weaker protection from corrosion owing to the lack of the passive film and the coarse morphology of α phase. After aging, more α phase precipitating causes the weakest protection from corrosion.
關鍵字(中) ★ SP-700
★ 固溶
★ 時效
★ 磨耗
★ 腐蝕
關鍵字(英) ★ SP-700
★ solution treatment
★ aging
★ wear
★ corrosion
論文目次 摘要…………………………………………………………… i
總目錄………………………………………………………… iv
圖目錄………………………………………………………… Vi
表目錄………………………………………………………… vii
一、前言……………………………………………………… 1
二、文獻回顧………………………………………………… 2
2.1鈦合金分類…………………………………………… 2
2.1.1純鈦……………………………………………… 2
2.1.2 α型鈦合金……………………………………… 4
2.1.3 α+β型鈦合金…………………………………… 5
2.1.4 β型鈦合金……………………………………… 6
2.1.5 SP-700 鈦合金之簡介………………………… 7
2.2 鈦合金熱處理……………………………………… 9
2.2.1 鈦合金麻田散鐵相變化……………………… 10
2.2.2 熱處理溫度高於β-transus溫度…………… 10
2.2.3 熱處理溫度低於β-transus溫度…………… 11
2.2.4 SP-700 固溶處理……………………………… 12
2.2.5 SP-700 時效處理……………………………… 12
2.3 磨耗簡介……………………………………………… 13
2.3.1磨耗機制類型…………………………………… 13
2.3.2 鈦合金磨耗……………………………………… 15
2.4 腐蝕簡介……………………………………………… 15
2.4.1 鈦合金腐蝕……………………………………… 15
2.4.2 電化學Tafel極化法腐蝕量測………………… 16
三、實驗流程與分析方法…………………………………… 17
3.1 實驗材料……………………………………………… 17
3.2 實驗步驟……………………………………………… 17
3.3 試片製作……………………………………………… 18
3.4 分析方法……………………………………………… 18
3.4.1 OM金相觀察……………………………………… 18
3.4.2 SEM金相、磨耗與腐蝕形貌觀察……………… 19
3.4.3 硬度試驗………………………………………… 19
3.4.4 磨耗試驗………………………………………… 19
3.4.5 腐蝕實驗………………………………………… 20
四、結果與討論……………………………………………… 22
4.1微結構觀察與分析…………………………………… 22
4.1.1 850℃固溶後降溫速度之影響………………… 22
4.1.2時效之影響……………………………………… 25
4.2 硬度…………………………………………………… 27
4.3 磨耗實驗……………………………………………… 28
4.3.1 磨耗阻抗………………………………………… 28
4.3.2磨耗表面表面分析……………………………… 29
4.3.3 磨耗剖面分析(磨耗方向垂直於剖面)………… 32
4.3.4 磨耗剖面分析(磨耗方向平行於剖面)………… 36
4.4 腐蝕實驗 ……………………………………………… 37
五、結論……………………………………………………… 40
六、參考文獻………………………………………………… 41
參考文獻 [ATT] M. M. Attallah,S. Zabeen,R. J.Cernik,M.Preuss, “Comparative determination of the α/β phase fraction in α+β-titanium alloys using X-ray diffraction and electron micro scopy”, Materials Characterization 60, pp.1248-1256. (2009)
[BRE] William D. Brewer, R. Keith Bird, Terryl A. Wallace, “Titanium Alloys and processing for high speed aircraft”, Materials Science and Engineering A243, pp.299-304.(1998)
[BRO] Brooks CR. “Heat treatment, structure and properties of non ferrous alloys”. Metals Park (OH): ASM International, p.329.(1982)
[BOY2] R. Boyer, E. W. Collings and G. Welsch, “Materials Properties Handbook: Titanium Alloys”, ASM International, p.687. (1994)
[BUD]Kenneth G. Budinski, “Surface engineering for wear resistance”, Prentice Hall, pp15-17. (1988)
[CAS]G. Cassar, “Surface modification of Ti–6Al–4V alloys using triode plasma oxidation treatments”, Surface & Coatings Technology 206, pp.4553–4561 (2012)
[CHE]R. Chelariu, “Metastable beta Ti-Nb-Mo alloys with improved corrosionresistance in saline solution”, Electrochimica Acta 137, pp.280–289 (2014)
[COZ]R.C. Cozza, “Friction coefficient and wear mode transition in micro-scale abrasion tests”, Tribology International 44, pp.1878–1889 (2011)
[DAV] J.R. Davis(EDs), “Metals handbook:Titanium and Titanium alloys”, Materials Park, Oh. : ASM International, p.575.(1998)
[FAZ]M. Fazel, “A comparison of corrosion, tribocorrosion and electrochemicalimpedance properties of pure Ti and Ti6Al4V alloy treated bymicro-arc oxidation process”, Applied Surface Science 324, pp.751–756 (2015)
[FON]M. G. Fontana and N. G. Greene, “Corrosion engineering”, McGraw-Hill, pp. 51-59. (1986)
[GAH]Karl-Heinz Zum Gahr, “Microstructure and wear of materials”, Elsevier, pp.80-87. (1987)
[GUN1] Gunawaram, Mitsuo Niinomi, “Effect of β Phase Stability at Room Temperature on Mechanical Properties in β-Rich α+β Type Ti-4.5Al-3V-2Mo-2Fe Alloy”, ISIJ International, Vol. 42,No.2, pp.191-199. (2002)
[ISH] M. Ishikawa, O. Kuboyama, M. Niikura and C. Ouchi, “Microstructure and Mechanical Properties Relationship of β-rich α-β Titanium Alloy; SP-700”, Titanium ′92 Science and Technology, edited by F. H. Froes and I. Caplan, Vol. 2, pp.141-148. (1993)
[JIA]Jiang Xu, “Nanocomposite bilayer film for resisting wear and corrosion damage of a Ti–6Al–4V alloy”, Surface & Coatings Technology 206, pp.4156–4165
[LEE]Yoon-Seok Lee, “Predominant factor determining wear properties of β-type and (α+β)-type titanium alloys in metal-to-metal contact for biomedical applications”, journal of the mechanical behavior of biomedical materials 41, pp.208-220 (2015)
[LIN]Matti Lindroos, “Wear behavior and work hardening of high strength steels in highstress abrasion”, Wear 322-323, pp.32–40 (2015)
[MAR]R.P. Martinho, “Micro-abrasion wear behaviour of TiAlCrSiN nanostructured coatings”, Wear 267, pp.1160–1165 (2009)
[NIN]S. Ningshen, “Corrosion performance and surface analysis of Ti–Ni–Pd–Ru–Cr alloy in nitric acid solution”, Corrosion Science 91, pp.120–128 (2015)
[HIL] I. Hall and C. Hammond, “Relation between crack propagation characteristics and fracture toughness in α+β titanium alloys,” In R. Jaffee (ed.), Plenum, New York, “Titanium Science and Technology”, Vol. 2, p.1365. (1973)
[HIL1] Robert E. Reed-Hill, “Physical Metallurgy Principle”, PWS Publishing Company, p.706. (1994)
[KAO] Y. L. Kao, G.C. Tu, C.A. Huang, T.T.Liu, “A Study on the Hardness variation of α- and β-pure titanium with different grain sizes,” Material Science & Engineering, pp.93-98 A (2005)
[OLI]V.M.C.A. Oliveira, “Improving corrosion resistance of Ti–6Al–4V alloy through plasma-assisted PVD deposited nitride coatings”, Corrosion Science 88, pp.317–327 (2014)
[OUC] C. Ouchi, in: S. Fujishiro, D. Eyloy and T. Kishi (Eds.), “Metallurgy and technology of practical titanium alloys”, TMS, Warrendale, PA, USA, pp. 37–44. (1994)
[OUC1] Chiaki Ouchi, Hideaki Fukai, Kohei Hasegawa, “Microstructural Characteristic And Unique Properties Obtained By Solution Treating Or Aging in β-rich α+β Titanium Alloy”, Material Science & Engineering A263, pp.132-136. (1999)
[POL] I.J.Polmear, “Light Alloys Metallurgy of the Light Meral”, forth edtion, p.354 .(2006)
[TAI] W. Stephen, Ph.D. Tait, “An Introduction to Electrochemical Corrosion Testing for Practicing Engineers & Scientists”, Pair O Docs Pubns, pp38-40. (1994)
[YOS] Yoshikazu Mantani, Yoshito Takemoto, Moritaka Hida, Akira Sakakibara, Mamoru Tajima, “Phase Transformation of α” Martensite Structure by Aging in Ti-8 mass%Mo Alloy”, Materials Transactions Vol.45 No.5, pp.1629-1634. (2004)
[ZHA] Zhang Zhanying, Wang Weimin, Cao Jimin, Xiao Songtao, “Effect of Cold Deformation on Microstructure and Mechanical Properties of Ti13Nb13Zr Titanium Alloy” , Hot Working Technology 38, pp.66-68. (2009)
指導教授 李勝隆(Shen-long Lee) 審核日期 2015-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明