博碩士論文 102621011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:149 、訪客IP:3.146.178.174
姓名 鄧詠霖(Yung-lin Teng)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 利用雷達觀測與反演變數改善模式定量降水預報之能力-2008 年西南氣流實驗IOP#8 個案分析
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析
★ 利用VAD技術及回波保守方程反演渦度場★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證
★ 在地形上由都卜勒風場反演熱動力場★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構
★ 同化雷達資料對數值預報影響之研究★ 使用系集卡曼濾波器同化都卜勒雷達資料之研究
★ 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響★ 台灣北部初秋豪雨個案之降雨特性研究
★ 同化都卜勒雷達資料改善模式預報之研究★ 2008年台灣西南部地區TRMM降雨雷達與七股雷達回波觀測比較分析及降雨估計應用研究
★ 使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報★ 同化多部都卜勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析
★ 結合VDRAS、WRF與雷達網聯資料,以檢視對台灣地區短期降水預報改善之成效★ 結合都卜勒雷達觀測及反演氣象變數與COSMIC RO資料以改進模式預報之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雷達觀測資料具有高時空解析度的特性,對於在四面環海、地勢複雜的臺灣進行天氣監控便相當重要。近年來,雷達資料也經常用於數值模式在對流尺度下的資料同化中,因此本研究應用臺灣地區多座都卜勒雷達資料,取得接近當時真實大氣的模式初始條件,改善模式的定量降水預報(Quantitative Precipitation Forecast,簡稱QPF)。本文所採用的資料同化方法主要包含:(1)多都卜勒雷達風場合成、(2)熱動力反演方法以及(3)溫度場與水氣場調整方法。在此以2008年西南氣流實驗(SoWMEX) 6月14日1200UTC作為選定的真實個案,雷達資料來自於中央氣象局的七股(RCCG)、墾丁(RCKT)、五分山(RCWF)、中央大學C-POL雷達以及美國NCAR的SPOL共5座雷達之回波與徑向風,搭配模式來源為ECMWF 再分析資料與探空、地面測站經客觀分析得到的模擬背景場,接著反演出三維風場、熱動力場(溫度與壓力)以及水氣場,最後放入數值模式WRF,進行6小時預報。本研究先以雷達回波資料在空間分布的性質設計實驗,設法對回波資料的無效值做區分,使資料的使用程度提高。另外,也使用大氣條件性不穩定的判別更新水氣場的門檻值,條件性不穩定以飽和相當位溫垂直遞減率為負值判定,同化結果顯示對於降水預報有一定程度的改善。6月14日1200UTC個案指出,在雷達網包含整個臺灣的狀態下,模式的預報能力可達2小時。最後吾人另擇同年6月16日0600UTC個案,以利用大氣條件性不穩定判別水氣場之實驗進行模式定量降水預報,顯示預報能力可達3小時。經過本研究測試,雷達資料同化在3小時內的QPF有其必要性,且反演方法僅需要少量雷達觀測資料便可進行資料同化,以達到改善模式定量預報之目的,相對於其他類型的資料同化系統而言(例如:4DVAR或EnKF),能降低計算成本。未來可將此方法結合以氣象衛星反演的垂直探空資料、多樣的個案測試、或是加密雷達監測網,提高本方法對於臺灣梅雨季之定量降水預報的穩定性。
摘要(英) There are high special and temporal characteristics in radar observations. Thus, it is important in weather survillence around the world. Recently, radar observations are also usually used in data assimilation for convective-scale systems. In the research, we attempt to use the Doppler radar data in Taiwan, then acquire the model initial condition to improve the Quantitative Precipitation Forecast (QPF). In this paper, the radar data assimilation mainly involves in the multiple-Doppler radar wind synthesis system, thermodynamic retrieval method, and temperature/moisture adjustment. A real case of 1200 UTC on 14 June 2008 during Southwest Monsoon Experiment (SoWMEX) is selected. Observational data from 5 radars are utilized, including S-POL (operated by NCAR), RCWF, RCCG and RCKT (operated by the Central Weather Bureau of Taiwan), and National Central University C-POL. The ECMWF reanalysis data, radiosondes, and surface mesonet stations are prepared to simulate a background field, and they are instantaneously applied to update the three-dimentional wind field, thermodynamic fields (pressure and temperature), and moisture fields. Therefore, we can regard them as initial fields for 6-hour model forecast. There are two tests in our experiments. The one is trying to classify the missing value of radar reflectivity. In this way, we can increase the data usage of radar observations. The other is using the conditional instability to modulate the saturation thresholds. It allows the model to forecast the precipitation much accuratly over the southwestern area in Taiwan. Similarly, another real case of 0600 UTC on 16 June 2008 is selected to use this modified saturation thresholds. The results show that the strategy in temperature/moisture adjustment, to a certain extent, improve the model QPF skill. To conclude, the above-mentioned experimental results imply that the model QPF skill in the convective-scale can be significantly improved about 2-3 hours using fewer radar data in these real case studies.
關鍵字(中) ★ 雷達觀測
★ 資料同化
★ 定量降水預報
關鍵字(英)
論文目次 中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 論文架構 4
第二章 雷達資料與研究方法 5
2.1 雷達觀測資料 5
2.1.1 七股雷達(RCCG) 5
2.1.2 墾丁雷達(RCKT) 5
2.1.3 SPOL雷達(SPOL) 6
2.1.4 中大雷達(NCU) 6
2.1.5 五分山雷達(RCWF) 6
2.2 雷達資料品質控管與處理 7
2.3 多都卜勒雷達風場合成 7
2.4 熱動力反演方法 12
2.5 溫度場與水氣場調整方法 14
2.6 反演分析場與模式結合方法 17
2.7 定量校驗方法 18
2.7.1 方均根誤差(RMSE) 18
2.7.2 空間相關係數(SCC) 18
2.7.3 公正預兆得分(ETS) 19
2.7.4 偏離指數(Bias) 20
第三章 研究個案介紹 21
3.1 2008年西南氣流實驗(SoWMEX) 21
3.2 IOP#8之6月14日個案 21
第四章 實驗架構與反演結果 23
4.1 WRF模式簡介 23
4.2 WRF模式設定 23
4.3 模式初始化與背景場 24
4.4 實驗設計 24
4.4.1 實驗組noDA 25
4.4.2 實驗組5R 25
4.4.3 實驗組5Rc 25
4.4.4 實驗組5R0 25
4.4.5 實驗組5Rd 27
4.5 反演結果 27
第五章 預報結果 29
5.1 最大回波場與地面降水分布 29
5.2 定量降水校驗 31
5.3 2008年6月16日0600UTC個案 32
第六章 結語與未來展望 35
6.1 結語 35
6.2 未來展望 36
參考文獻 38
附圖 42
附表 93
參考文獻 戴俐卉、洪景山、莊秉潔、蔡徵霖和倪佩貞,2008:WRF 模式台灣地區土地利用類型之更新與個案研究。大氣科學,第36期,43–62。
廖浩彥,2014:利用雷達觀測直接反演氣象變數進行資料同化以改進短期定量降水預報-2008 SoWMEX IOP8個案分析。國立中央大學大氣物理所碩士論文,1–89。
柯靜吟,2014:2012年梅雨期間6月11日台灣北部豪大雨個案雷達資料分析。國立中央大學大氣物理所碩士論文,1–86。
黃沛瑜,2012:使用多部都卜勒/偏極化雷達分析凡那比颱風(2010)的眼牆重建過程。國立中央大學大氣物理研究所碩士論文,1–90。
邱健倫,2013:使用氣象雷達改善對流尺度定量降水預報研究-理想和真實個案之分析結果。國立中央大學大氣物理所碩士論文,1–82。
鐘高陞、廖宇慶、陳台琦,2002:由都卜勒風場反演三維熱動力場的可行性研究-以臺灣地區颮線個案為例。大氣科學,第30期,313–330。
陳尉豪和廖宇慶,2012:同化多都卜勒雷達資料以改善模式定量降水預報-2008 SoWMEX IOP8 個案分析。大氣科學,第40期,323–348。
蔡宜君,2012:使用偏極化/多都卜勒雷達資料研究莫拉克颱風(2009)地形降雨特性。國立中央大學大氣物理研究所碩士論文,1–83。
尤心瑜和廖宇慶,2011:使用都卜勒氣象雷達資料改善模式定量降雨預報之可行性研究-以模擬資料測試之實驗結果。大氣科學,第39期,1–24。
Anthes, R. A., 1983: Regional models of the atmosphere in middle latitudes. Mon. Wea. Rev., 111, 1306–1330.
Barnes, S. L., 1973: Mesoscale objective map analysis using weighted time series observation. NOAA Tech. Memo. Erl Nssl-62, 60pp.
Chung, K. S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-Term Forecasting of a Midlatitude Convective Storm by the Assimilation of Single–Doppler Radar Observations. Mon. Wea. Rev., 137, 4115–4135.
Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev., 87, 67–374.
Crook, N. A., 1996: The sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 1767–1785.
_____, and J. Sun, 2002: Assimilating radar, surface and profiler data for the Sydney 2000 Forecast Demonstration Project. J. Atmos. Oceanic Technol., 19, 888–898.
_____, and _____, 2004: Analysis and forecasting of the low-level wind during the Sydney 2000 forecast demonstration project. Wea. Forecasting, 19, 151–167.
Gal-Chen, T., 1978: A method for the initialization of the anelastic equations: Implications for matching models with observations. Mon. Wea. Rev., 106, 587–606.
Germann, Urs, and Isztar Zawadzki, 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 2859-2873.
Holton, J. R. and G. J. Hakim, 2012: An Introduction to Dynamic Meteorology. 5th. Ed., Academic Press, 552 pp.
Hu, M., M. Xue, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms.Part I: Cloud analysis and its impact, Mon. Wea. Rev., 134, 675–698.
_____, _____, J. Gao, and _____, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR, Mon. Wea. Rev., 134, 699–721.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.
_____, H. Shen, T.-C. C. Wang, Z-S. Deng, and R. W. Pasken, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part II: Dynamic and thermodynamic structures and momentum budgets. J. Atmos. Sci., 47, 2382–2399.
Liou, Y.-C., 2001: The derivation of absolute potential temperature perturbations and pressure gradients from wind measurements in three-dimensional space. J. Atmos. Oceanic Technol., 18, 577–590.
_____, J.-L. Chiou, W.-H. Chen, H.-Y. Yu, 2014: Improving the model convective storm quantitative precipitation nowcasting by assimilating state variables retrieved from multiple-Doppler radar observations, Mon. Wea. Rev., 142, 4017–4035.
_____, T.-C. Chen Wang, and K. S. Chung, 2003: A three-dimensional Variational approach for deriving the thermodynamic structure using Doppler wind observations-An application to a subtropical squall line. J. Appl. Meteor., 42, 1443–1454.
_____, Y.-J. Chang., 2009: A variational multiple–Doppler radar three-dimensional wind synthesis method and its impacts on thermodynamic retrieval. Mon. Wea. Rev., 137, 3992–4010.
Rogers R. R., and M. K. Yau, 1989: A short course in cloud physics, Pergamon, Oxford, England, 293pp.
Rogers, J., Howard, K. and Vessey, J., 1996: Using significance tests to evaluate equivalence between two experimental groups. Psychological Bulletin, 113, 553–656.
Roux, F., 1985: Retrieval of thermodynamic fields from multiple-Doppler radar data using the equations of motion and the thermodynamic equation. Mon. Wea. Rev., 113, 2142–2157.
_____, 1988: The West African squall line observed on 23 June 1981 during COPT 81: Kinematics and thermodynamics of the convective region. J. Atmos.Sci., 45, 406–426.
_____, and J. Sun, 1990: Single-Doppler observations of a West African squall line on 27–28 May 1981 during COPT 81: Kinematics, thermodynamics and water budget. Mon. Wea. Rev., 118, 1826–1854.
Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570–575.
Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52, 1265–1287.
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663–1677.
Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661.
_____, and _____, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835–852.
_____, and _____, 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117–132.
Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, and M.-C. Kuo, 2011: Precipitation Forecast using Doppler Radar Data, a Cloud Model with Adjoint, and the Weather Research and Forecasting Model–Real Case Studies during SoWMEX in Taiwan. Wea. Forecasting, 26, 975–992.
Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807.
Xiao, Q., Y. H. Kuo, J. Sun, W. C. Lee, E. Lim, Y. R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR System: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768–788.
Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation, Meteor. Atmos. Phys., 82, 139–170.
指導教授 廖宇慶(Yu-chieng Liou) 審核日期 2015-10-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明