博碩士論文 983407002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.145.40.251
姓名 游釗銘(Jhao-Ming Yu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 頻域式擴散光學造影之乳房掃描暨量測系統研究
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近紅外光擴散光學成像(near infrared diffuse optical imaging, NIR DOI)是新穎的功能性醫學造影技術,其檢測機制乃藉個別組織(如皮膚、脂肪、及腦灰質等)光學特性差異,以及病變組織血紅素濃度增加、含氧飽和程度降低等,致NIR特定波段的光吸收、散射特性有所差異,以此區分組織之變異狀況。因台灣乳癌發生率及死亡率逐年提升,且基於早期發現對治療及預後有正面幫助,故本研究藉由設計三維環形掃描裝置,結合頻域式光學量測技術,建立應用於乳癌檢測之俯臥式擴散光學斷層掃描造影系統。
環形檢測裝置之掃描模式採mZnS設計,藉由光源與光偵測器通道配置,使適度減少檢測過程所需掃描角度,進而降低檢測時間。此裝置藉由徑向同動機構設計,可依不同乳房幾何外型,完成直徑50mm至150mm範圍及垂直軸150mm之斷層掃描範圍;另外,光學量測上,採用強度調變頻率20MHz之單波長光源輸入乳房,並透過光電倍增管擷取其表面逐點輸出之光學資訊並轉成電訊號,再藉混波器調變及解調過程獲得各檢測點之幅值及相位特徵,最後再藉由中大D-BioM實驗室發展之光學係數影像重建軟體NIRFD_PC-r重建乳房內部之光學影像。本光學量測系統乃透過光電訊號校正程序,使提高系統輸出訊號穩定性。本研究藉由80mm仿乳房光學係數假體實驗,完成檢測系統對仿體之幾何及光學特徵驗證,並透過斷層掃描施作完成嵌入式腫瘤仿體檢測驗證。
基於本研究發展之臥床式擴散光學斷層掃描系統,以功能性成像、頻域式量測及非接觸掃描等特點,可望提高乳房病灶之檢知率及受檢者之接受度,進而增加篩檢率。
摘要(英) Breast cancer has long-term remained the highest incidence rate, and the 4th highest mortality rate for woman in Taiwan. Based on routine X-ray breast mammography, relatively safe near infrared diffuse optical imaging (NIR DOI) is emerging as a potential imaging technique for breast cancer detection. Compared with the mammography which gives only the structural images of breast tissue, DOI provides not only the structural information, but also the functional images including oxyhemoglobin, deoxyhemoglobin, lipid and water content as well as the morphological images including nucleus size and volume fraction. This research project aims to obtain structural, functional and morphological contents of breast tissue using a multi-spectral DOI image reconstruction approach.
In this study, we propose and implement three-dimensional (3-D) ring-scanning equipment for near-infrared (NIR) diffuse optical imaging to screen breast tumors under prostrating examination. This equipment has the function of the radial, circular, and vertical motion without compression of breast tissue, thereby achieving 3-D scanning; furthermore, a flexible combination of mZnS design of illumination and detection can be configured for the required resolution. The research proceeds to the development of prostrate-type DOI system based on previous basis, such as frequency-domain measurement system, inverse computation scheme for optical-property images, and algorithms for the purpose of rapid convergence, edge-preserving for better tumor detection. Results of this study showed phantom experiment confirmed that the 3-D scanning system can distinguish the geometric and optical characteristics difference between tumors and background.
關鍵字(中) ★ 近紅外光擴散光學成像
★ 三維環形掃描
★ 頻域式光學量測
★ 俯臥式
★ mZnS
★ 光學係數影像
★ 仿乳假體驗證
關鍵字(英) ★ NIR DOI
★ 3-D ring-scanning
★ mZnS
★ prostrate-type
★ frequency-domain measurement
★ optical-property images
★ phantom experiment
論文目次 摘要 I
Abstracts II
致謝 III
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻探討 3
1-2-1 光學檢測技術 3
1-2-2 光訊號擷取平台 4
1-3 研究範疇 6
第二章 理論基礎 8
2-1 乳房組織光學特性 8
2-2 組織擴散光學量測 11
2-2-1頻域式量測系統分析 13
2-2-2光學掃描模式 15
2-3 頻域式擴散光學影像重建 17
2-3-1 頻域式量測 18
2-3-2 光學係數影像重建法 20
第三章 環形掃描裝置設計製作 24
3-1 掃描模組設計 24
3-1-1 光通道徑向位移機構設計 25
3-1-2 機台運動控制設計 29
3-2 系統操作與控制 31
3-2-1 機台運動操作時間 32
3-2-2 系統檢測程序 34
3-2-3 掃描機台操控/量測人機介面 35
3-3 仿乳房光學特性假體 37
第四章 頻域式擴散光學量測 39
4-1 系統架構 39
4-2 光電元件特性與測試 40
4-2-1 光源端元件 40
4-2-2 光偵測器端元件 42
4-2-3 電訊號處理元件 50
4-3 檢測系統校正 54
4-3-1 多光偵測器應用 54
4-3-2 光電檢測系統校正 55
4-3-3 標準仿體校正 57
第五章 檢測驗證與結果討論 60
5-1 仿乳假體實驗設計 60
5-2 結果分析與討論 61
第六章 結論與未來展望 66
6-1結論 66
6-2 未來展望 67
參考文獻 68
附錄A、頻域式檢測系統訊號分析 76
附錄B、環形掃描模式設計 79
研究成果發表 82
個人簡歷 85
參考文獻 [1] IARC, “Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012,” GLOBOCAN 2012, WHO, 2015.
[2] American Cancer Society, “Breast Cancer Facts & Figures 2013-2014,” Atlanta: American Cancer Society, Inc., 2013.
[3] 國民健康署,“1-1 侵襲癌發生率及死亡率”,民國89-101年癌症登記報告,中華民國衛生福利部,2003-2015。
[4] D. B. Kopans, “Breast imaging,” Lippincott-Raven Publishers, Philadelphia, NY, 2nd Edition, 1998.
[5] 許居誠、林文瓊,“乳房影像診斷之發展”,中華癌醫會誌,24(2),第98-101頁,2008。
[6] 王甄、施庭芳,“乳房影像學-基礎與實際應用”,國立台灣大學醫學院,2009。
[7] E. A. Morris, L. Liberman, D. J. Ballon, M. Robson, A. F. Abramson, A. Heerdt and D. D. Dershaw, “MRI of occult breast carcinoma in a high-risk population,” Am. J. of Roentgenol., 181(3), 619-626, 2003.
[8] M. Kriege, C. T. Brekeimans, C. Boetes, P. E. Besnard et al. “Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition,” N. Engl. J. Med., 351(5), 427-437, 2004.
[9] A. B Hollingsworth, S. E. Singletary, M. Morrow, D. S Francescatti, J. A O′Shaughnessy, A. R. Hartman, B. Haddad, F. R Schnabel, and V. G Vogel, “Current comprehensive assessment and management of women at increased risk for breast cancer,” Am. J. Surg., 187(3), 349-362, 2004.
[10] M. Herranz and A. Ruibal, "Optical Imaging in Breast Cancer Diagnosis: The Next Evolution," J. Oncol., 2012, 863747, 2012.
[11] T. J. Brukilacchio, “Review of Diffuse Optical Tomography: Theory and Tissue Optics,” Chapter 2 in A diffuse optical tomography system combined with X-ray mammography for improved breast cancer detection, pp. 8-42, Tufts University, 2003.
[12] M. Cutler, “Trans-illumination as an aid in the diagnosis of breast lesions,” Surg. Gynecol. Obst., 48, 721-727, 1929.
[13] L. V. Wang and H. I. Wu, “Photoacoustic Tomography,” Chapter 12 in Biomedical Optics Principles and Imaging, pp. 283-321, A John Wiley & Sons Inc., 2007.
[14] S. A. Boppart, W. Luo, D. L. Marks, and K. W. Singletary, “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Tr., 84, 85-97, 2004.
[15] M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum., 77, 041101, 2006.
[16] S.M.W.Y. van de Ven, W.P.Th.M. Mali, S.G. Elias, A.J. Wiethoff, M. van der Voort, M.B. van der Mark, and P. Luijten, “Optical imaging of the breast: clinical research using an experimental Diffuse Optical Tomography system,” MedicaMundi, 54, 69-77, 2010.
[17] J. H. Moon, H. H. Kim, H. J. Shin, H. Kim, M. S. Ko, and G. Gong, “Supplemental Use of Optical Diffusion Breast Imaging for Differentiation Between Benign and Malignant Breast Lesions,” Am. J. of Roentgenol., 197, 732-739, 2011.
[18] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys., 66, 239-303, 2003.
[19] S. A. Boppart, “Optical coherence tomography: Technology and applications for neuroimaging,” Psychophysiology, 40(4), 529–541, 2003.
[20] W. Drexler and J. G. Fujimoto, “Inverse Scattering, Dispersion, and Speckle in Optical Coherence Tomography,” Chapter 4 in Optical Coherence Tomography: Technology and Applications, pp.119-144, Springer, 2008.
[21] R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of Breast Cancer With Optical Coherence Tomography Needle Probes: Feasibility and Initial Results,” IEEE J. Sel. Top. Quant. Electron., 18(3), 1184-1191, 2012.
[22] L. V. Wang, “Prospects of photoacoustic tomography,” Am. Assoc. Phys. Med., 30(12), 5758-5767, 2008.
[23] E. De Montigny, “Photoacoustic Tomography: Principles and applications,” École Polytechnique de Montréal, 2011.
[24] M. Mehrmohammadi, S. J. Yoon, D. Yeager, and S. Y. Emelianov, “Photoacoustic Imaging for Cancer Detection and Staging,” Curr. Mol. Imaging, 2(1), 89-105, 2013.
[25] A. H. Hielscher, A.Y. Bluestonea, G.S. Abdoulaev, A.D. Klose, J. Lasker, M. Stewart,U. Netz and J. Beuthan, “Near-infrared diffuse optical tomography,” Dis. Markers, 10, 313-337, 2002.
[26] P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli and R. Cubeddu, “Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm,” J. Biomed. Opt., 9(3), 464-473, 2004.
[27] L. C. Enfield, A. P. Gibson, J. C. Hebden and M. Douek, “Optical tomography of breast cancer—monitoring response to primary medical therapy,” Targ. Oncol., 4, 219–233, 2009.
[28] K. Lee, “Optical mammography: Diffuse optical imaging of breast cancer,” World J. Clin. Oncol., 2(1), 64-72, 2011.
[29] J. P. Culvera, R. Choe, M. J. Holboke, L. Zubkov, T. Durduran, A. Slemp, V. Ntziachristos, B. Chance, and A. G. Yodh, “Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: Evaluation of a hybrid frequency domain continuous wave clinical system for breast imaging,” Am. Assoc. Phys. Med., 30(2), 235-247, 2003.
[30] T. Durduran, R. Choe, J. P. Culver, L. Zubkov, M.J. Holboke, J. Giammarco, B. Chance, and A.G. Yodh, “Bulk optical properties of healthy female breast tissue,” Phy. Med. Biol., 47, 2847-2861, 2002.
[31] Zhang, Q., Brukilacchio, T. J., Li, A., Stott, J. J., Chaves T., Hillman, E., Wu, T., Chorlton, M., Rafferty, E., Moore, R. H., Kopans, D. B. and Boas, D. A., “Coregistered tomographic X-ray and optical breast imaging:Initial results, ” J. Biomed. Opt., 10, 024033–024033, 2005.
[32] Fang, Q., Carp, S. A., Selb, J., Boverman, G., Zhang, Q., Kopans, D. B., Moore, R. H., Miller, E. L., Brooks, D. H, and Boas, D. A., “Combined Optical Imaging and Mammography of the Healthy Breast: Optical Contrast Derived From Breast Structure and Compression, ” IEEE Trans. Med. Imaging, 28(1), 2009.
[33] B. W. Pogue, M. Testorf, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, “Instrumentation and design of a frequency domain diffuse optical tomography imager for breast cancer detection,” Opt. Express, 1(13), 391–403, 1997.
[34] F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum., 71(1), 256–265, 2000.
[35] B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, Ulf L. O¨sterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast,” Radiology, 218(1), 261–266, 2001.
[36] T. O. McBride, B. W. Pogue, S. Poplack, S. Soho, W. A. Wells, S. Jiang, Ulf L. O¨sterberg, and K. D. Paulsen, “Multispectral near-infrared tomography: a case study in compensating for water and lipid content in hemoglobin imaging of the breast,” J. Biomed. Opt., 7(1), 72–79 (2002).
[37] S. Jiang, B. W. Pogue, T. O. McBride, and K. D. Paulsen, “Quantitative analysis of near-infrared tomography: sensitivity to the tissue-simulating precalibration phantom,” J. Biomed. Opt., 8(2), 308–315, 2003.
[38] N. Iftimia, X. Gu, Y. Xu and H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Inst., 74(5), 2834–2842, 2003.
[39] G. Gulsen, B. Xiong, O. Birgul, and O. Nalcioglu, “Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt., 11(1), 014020, 2006.
[40] G. Gulsen, O. Birgul, M. B. Unlu, R. Shafiiha, and O. Nalcioglu, “Combined diffuse optical tomography (DOT) and MRI system for cancer imaging in small animals,” Technol. Cancer Res. Treat. 5(4), 351–363, 2006.
[41] X. Li, L. Xi, R. Jiang, L. Yao, and H. Jiang, “Integrated diffuse optical tomography and photoacoustic tomography: phantom validations,” Biomed. Opt. Express, 2(8), 2348–2353, 2011.
[42] J. E. Gunther, E. Lim, H. K. Kim, M. Flexman, M. Brown, S. Refrice, K. Kalinsky, D. Hershman, and A. H. Hielscher, “Using diffuse optical tomography to monitor tumor response to neoadjuvant chemotherapy in breast cancer patients,” Proc. SPIE 8578, 85780J, 2013.
[43] S. B. Colak, M. B. van der Mark, G. W. ’t Hooft, J. H. Hoogenraad, E. S. van der Linden, and F. A. Kuijpers, “Clinical optical tomography and NIR spectroscopy for breast cancer detection,” IEEE J. Sel. Top. Quant., 5(4), 1143–1158, 1999.
[44] T. D. Yates, J. C. Hebden, A. P. Gibson, L. Enfield, N. L. Everdell, S. R. Arridge, and D. T. Delpy, “Time-resolved optical mammography using a liquid coupled interface,” J. Biomed. Opt., 10(5), 054011, 2005.
[45] S. M. W. Y. van de Ven, S. G. Elias, M. A. A. J. van den Bosch, P. Luijten and W. P. Th.M. Mali, “Optical imaging of the breast,” Int. Cancer Imaging Soc., 8, 206-215, 2008.
[46] R. Al Abdi, H. L. Graber, Y. Xu, and R. L. Barbour, “Optomechanical imaging system for breast cancer detection,” J. Opt. Soc. Am. A., 28(12), 2473–2493, 2011.
[47] M. L. Flexman, M. A. Khalil, R. Al Abdi, H. K. Kim, C. J. Fong, E. Desperito, D. L. Hershman, R. L. Barbour, and A. H. Hielscher, “Digital optical tomography system for dynamic breast imaging,” J. Biomed. Opt., 16(7), 076014, 2011.
[48] S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36(1), 180–213, 1997.
[49] B. Alacam, B. Yazici1, X. Intes, S. Nioka, and B. Chance, “Pharmacokinetic-rate images of indocyanine green for breast tumors using near-infrared optical methods,” Phys. Med. Biol., 53(4), 837-859, 2008.
[50] M.-Chun Pan, C. H. Chen, M.-Cheng Pan, and Y. M. Shyr, “Near infrared tomographic system based on high angular resolution mechanism – Design, calibration, and performance,” Meas. 42, 377-389, 2009.
[51] R. Padmaram, “The overall instrument design,” Chapter 3 in Design, Fabrication, and Testing of a Versatile, and Low-Cost Diffuse Optical Tomographic Imaging System, MD Thesis, 30–65, IISc, Bangalore, India, 2007.
[52] J. M. Yu, M.-Cheng Pan, and M.-Chun Pan, “Design for source-and-detector configuration of a ring-scanning-based near-infrared optical imaging system,” Opt. Eng., 52(1), 011002, 2014.
[53] E. Vandeweyer, and D. Hertens, “Quantification of glands and fat in breast tissue: An experimental determination,” Ann. Anat., 184(2), 181–184, 2002.
[54] B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys., 60, 227-292, 1997.
[55] M. Varjonen, “Introduction,” Chapter 2 in Three-dimensional digital breast tomosynthesis in the early diagnosis and detection of breast cancer, pp. 2-3, Tampere University of Technology, 2006.
[56] S. G. Komen for the Cure, “Types of Breast Cancer Tumors,” Susan G. Komen for the Cure, 806-369, 2008.
[57] A.Rim and M. Chellman-Jeffers, “Trends in breast cancer screening and diagnosis,” Cleve. Clin. J. Med., 75(1), 2-9, 2008.
[58] National Breast and Ovarian Cancer Centre, “Breast cancer risk factors: a review of the evidence,” National Breast and Ovarian Cancer Centre, Surry Hills, NSW, 2009.
[59] L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D Imaging Through Scattering Walls Using an Ultrafast Optical Kerr Gate,” Reports, 16, 769-771, 1991.
[60] L. Wang, X. Liang, P. Galland, P. P. Ho, and R. R. Alfano, “True scattering coefficients of turbid matter measured by early-time gating,” Opt. Lett., 20(8), 913-915, 1995.
[61] V. V. Tuchin, “Tissue optics: light scattering methods and instruments for medical diagnosis,” 2nd edition, SPIE Press, Bellingham, Washington, USA, 2007.
[62] L. V. Wang and H. I. Wu, “Biomedical optics: principles and imaging,” John Wiley & Sons, Inc., New Jersey, 2007.
[63] J. V. Garcia, F. Zhang and P. C. Ford, “Multi-photon excitation in uncaging the small molecule bioregulator nitric oxide,” Phil. Trans. R. Soc. A., 371, 20120129, 2013.
[64] S. B Fox, D. G. Generali and A. L. Harris, “Review: Breast tumour angiogenesis,” Breast Cancer Res., 9(6), 216, 2007.
[65] A. E. Profio and G.. A. Navarro, “Scientific basis of breast diaphanography,” Med. Phys., 16, 60-65, 1989.
[66] B. J. Tromberg, A. E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, A. J. Berger, J. Butler, and R. F. Holcombe, “Functional diffuse optical spectroscopy of human breast tissue,” The 14th Annual Meeting of the IEEE, 1, 259-260, 2001.
[67] A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” Pans., 104(10), 4014-4019, 2007.
[68] Oregon Medical Laser Center, “Optical Properties Spectra,”
http://omlc.org/index.html.
[69] A. H Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotech., 16, 79-88, 2005.
[70] V. Nadhira, D. Kurniadi, E. Juliastuti, and A. Sutiswan, “Study of continuous-wave domain fluorescence diffuse optical tomography for quality control on agricultural produce,” AIP Conf. Proc., 1589, 276-280, 2014.
[71] T. Durduran, R. Choe, W. B. Baker and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys., 73, 076701-1-43, 2010.
[72] B. W. Pogue, T. O. McBride, U. L. Osterberg and K. D. Paulsen, “Comparison of imaging geometries for diffuse optical tomography of tissue,” Opt. Exp., 4(8), 270-286, 1999.
[73] H. C. Chiang, J. M. Yu, L. Y. Chen, M.-Cheng Pan, S. Y. Sun, C. C. Chou, and M.-Chun Pan, “Mammogram-based diffuse optical tomography,” Proc. SPIE, 8216, Multimodal Biomedical Imaging VII, 821607, Feb 2012.
[74] J. M. Yu, L. Y. Chen, H. C. Chiang, M. -Cheng Pan, S. Y. Sun, C. C. Chou, and M. -Chun Pan, “Parallel Scanning Architecture for Mammography-Based Diffuse Optical Imaging,” J. Med. Dev., 7, 020936, 2013.
[75] S. L. Jacques, B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt., 13(4), 041302-1-19, 2008.
[76] S. L Jacques, “Optical properties of biological tissues: a review,” Phys. Med. Biol., 58, 37-61, 2013.
[77] L. Y. Chen, M.-Chun Pan, and M.-Cheng Pan, “Implementation of edge-preserving regularization for frequency-domain diffuse optical tomography,” Appl. Opt., 51(1), 43-54, 2012.
[78] L. Y. Chen, M.-Cheng Pan, and M.-Chun Pan, “Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization,” Appl. Opt., 52(6), 1173-1182, 2013.
[79] P. F. Judy, R. G. Swensson, R. Nawfel, K. H. Chan, and S. E. Seltzer, “Contrast-detail curves for liver CT,” Med. Phys., 19(5), 1167–1174, 1992.
[80] B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography,” J. Biomed. Opt., 11(3), 033001, 2006.
[81] S. Rivetti, N. Lanconelli, M. Bertolini, A. Nitrosi, A. Burani, and D. Acchiappati, “Comparison of different computed radiography systems: physical characterization and contrast detail analysis,” Med. Phys., 37(2), 440–448, 2010.
[82] L. Y. Chen, M.-Cheng Pan, and M.-Chun Pan, “Visualized Numerical Assessment for Near Infrared Diffuse Optical Tomography with Contrast-and-Size Detail Analysis,” Opt. Rev., 20(1), 19-25, 2013.
[83] F. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Refractive Index of Some Mammalian Tissue Using a Fiber Optic Cladding Method,” Appl. Opt., 28(12), 2297-2303, 1989.
[84] G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, M. R. Hee, and J. G. Fujimoto, “Determination of The Refractive Index of Highly Scattering Human Tissue by Optical Coherence Tomography,” Opt. Lett., 20(21), 2258-2260, 1995.
[85] B. W. Pouge and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt., 11(4), 041102, 2006.
[86] A. J. Welch and M. J. C. van Gemert, “Optical-Thermal Response of Laser-Irradiated Tissue,” Springer Netherlands, New York, 1995.
[87] G. M. Hale, and M. R. Querry, “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt., 12(3), 555-563, 1973.
[88] B. A. Brooksby, “Phantom design,” Chapter 5 in Combining near infrared tomography and magnetic resonance imaging to improve breast tissue chromophore and scattering assessment, pp. 85-93, Dartmouth College, 2005.
[89] Hamamatsu, “Photomultiplier Tubes: Construction and Operating Characteristics Connections to External Circuits,” Hamamatsu Photonics Deutschland GmbH, Hamamatsu City, 1998.
[90] Hamamatsu, “Photomultiplier Tubes Modules,” Hamamatsu Photonics Deutschland GmbH, Hamamatsu City, 2007.
[91] F. Marki and C. Marki, “Mixer Basics Primer: A Tutorial for RF & Microwave Mixers,” Marki Microwave, Inc., Morgan Hill, 2010.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2015-10-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明