博碩士論文 102621021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:3.145.161.235
姓名 吳品穎(Pin-Ying Wu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用系集重新定位法改善對流尺度定量降水即時預報:2009年莫拉克颱風個案研究
(Improving Convective-Scale Quantitative Precipitation Nowcasting with the Mean Recentering scheme: A Case Study of Typhoon Morakot (2009))
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析
★ 利用VAD技術及回波保守方程反演渦度場★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證
★ 在地形上由都卜勒風場反演熱動力場★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構
★ 同化雷達資料對數值預報影響之研究★ 使用系集卡曼濾波器同化都卜勒雷達資料之研究
★ 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響★ 台灣北部初秋豪雨個案之降雨特性研究
★ 同化都卜勒雷達資料改善模式預報之研究★ 2008年台灣西南部地區TRMM降雨雷達與七股雷達回波觀測比較分析及降雨估計應用研究
★ 使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報★ 同化多部都卜勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析
★ 結合VDRAS、WRF與雷達網聯資料,以檢視對台灣地區短期降水預報改善之成效★ 結合都卜勒雷達觀測及反演氣象變數與COSMIC RO資料以改進模式預報之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對莫拉克颱風(2009)侵台帶來豐沛強降雨的時段,結合系集重新定位法(mean recentering scheme)與系集預報系統、以及WRF-LETKF雷達資料同化系統,探討系集重新定位法是否能用以改善對流尺度定量降水即時預報。實驗共分為兩部分,首先將系集重新定位法應用於單純系集預報系統,來評估其對定量降水即時預報的影響以及合適的實驗策略。接著將系集重新定位法應用於雷達資料同化系統,探討系集重新定位法能否進一步增進雷達資料同化系統的預報能力。
首先在單純系集預報系統實驗的部分,先以三小時累積雨量之空間相關係數選取最佳系集成員進行系集重新定位,另外也依據雷達徑向風、回波等不同變數選取最佳系集成員做為敏感度測試。所有實驗皆進行系集預報,並以PM (probability-matched)系集平均代替一般算數平均來表示系集的決定性定量降水預報。結果顯示在本研究的個案中,系集重新定位法可以有效地降低模式降雨預報在中央山脈南部的高估。而使用與降雨較相關的變數來選擇最佳系集成員,其降雨分布及機率定量降水預報與觀測較類似。另外使用幾個較好的成員平均當作最佳初始平均場,可以透過平均平滑掉一些個別成員的錯誤訊息,得到較穩定的改善。
而第二部分則將系集重新定位法應用於雷達資料同化系統。由標準雷達資料同化實驗的結果可知,不論有無同化回波,同化徑向風能幫助模式掌握到阿里山附近的強降雨帶,然而對於中央山脈南部高估的降雨預報則無明顯改善。而在結合系集重新定位法與雷達資料同化系統進行系集重新定位循環後,可以降低南部的總可降水量,進而改善標準雷達資料同化無法移除的過度預報。值得注意的是使用累積雨量來挑選最佳系集成員時,同化回波能讓選出的最佳初始場更具代表性,使系集重新定位法的改善更合理。另外在敏感度測試中我們發現,進行系集重新定位循環時,可使用較長的同化間距即可得到有效的改善,且其效果可維持到第六小時的定量降水預報。
摘要(英) In this study, the mean recentering (MRC) scheme was applied to the ensemble prediction system (EPS) and incorporated with the WRF-LETKF radar data assimilation system. The benefits of the MRC scheme to the convective-scale quantitative precipitation nowcasting (QPN) are investigated by a case study of Typhoon Morakot (2009).
As a key step in the MRC scheme, the best member was selected by the spatial correlation coefficients (SCC) of the 3-hour rainfall accumulation and the performance of the precipitation nowcasting with the EPS was evaluated. In the deterministic QPN shown in probability-matched (PM) ensemble mean, the MRC scheme reduced the unrealistic excessive rainfall at the southern Central Mountain Range (CMR). Result suggests that the effect of the MRC scheme on QPN is sensitive to the choice of the best member. Selecting the best member base on the metrics related to precipitation helps improve the patterns of the QPN and the probability quantitative precipitation forecast (PQPF). In addition, taking the mean of a few good members as the best initial condition leads to more stable improvement.
The MRC scheme was further incorporated with the WRF-LETKF radar data assimilation system. First, result shows that assimilating radar radial wind helped the model to capture the strong rainfall near Alishan (阿里山). However, the unrealistic excessive rainfall prediction at southern CMR still existed. After applying the MRC scheme, the amount of hydrometeor at southern Taiwan was reduced, and thus the unrealistic excessive rainfall could be alleviated. In order to make the MRC cycle effective with the metric of rainfall accumulation, it is suggested to assimilate both radar radial velocity and reflectivity. Finally, result from the sensitivity experiments suggests that the 1-hr interval is long enough for the MRC cycle to improve the 1-6 hr QPN.
關鍵字(中) ★ 系集重新定位法
★ WRF-LETKF雷達資料同化
★ 定量降水即時預報
★ 莫拉克颱風
關鍵字(英) ★ mean recentering scheme
★ WRF-LETKF radar data assimilation
★ quantitative precipitation nowcasting
★ typhoon Morakot
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vi
第一章 緒論 1
1-1 背景與文獻回顧 1
1-2 研究動機 3
1-3 個案簡介 4
第二章 研究方法 6
2-1 數值天氣預報模式 6
2-2 雷達資料同化系統 7
2-2-1 系集卡爾曼濾波器(Ensemble Kalmen Filter, EnKF) 7
2-2-2 局地化系集轉換卡爾曼濾波器(LETKF) 9
2-2-3 雷達資料與觀測算符 11
2-3 系集重新定位法 13
2-4 機率撮合系集平均(Probability-matched ensemble mean) 14
2-5 降雨校驗 16
第三章 系集預報系統實驗 18
3-1 實驗設計 18
3-2 訓練時間 19
3-2-1 最佳系集成員 19
3-2-2 系集定量降雨預報 19
3-3 定量降雨預報結果 21
3-4 小結 23
第四章 雷達資料同化實驗 25
4-1 標準雷達資料同化 25
4-2 系集重新定位循環 27
4-2-1 模式預報結果 27
4-2-2 誤差結構與降雨校驗得分 28
4-3 敏感度測試 30
4-5 小結 31
第五章 總結與未來展望 33
5-1 總結 33
5-2 未來展望 34
參考文獻 37
附錄 45
附表 47
附圖 51
參考文獻 邵彥銘,2015:利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報:SoWMEX IOP8個案分析。國立中央大學,大氣物理研究所,碩士論文,共78頁。
葉世瑄,2014:系集定量降水預報方法之研究。國立中央大學,大氣物理研究所,碩士論文,共82頁。
蔡直謙,2014:利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009)。國立中央大學,大氣物理研究所,博士論文,共71頁。
蔡直謙、林忠義、劉嘉騏、蕭玲鳳、廖宇慶和李清勝,2015:WRF-LETKF雷達同化系統於多個豪雨事件之極短期降雨預報表現。104年天氣分析與預報研討會,中央氣象局,台北。
Anderson, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Mon. Wea. Rev., 129, 2884–2903.
Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts. Mon. Wea. Rev., 127, 2741–2758.
Arakawa, A., and V. R. Lamb, 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, 17, Academic Press, 173–265.
Berenguer, M., and I. Zawadzki, 2008: A study of the error covariance matrix of radar rainfall estimates in stratiform rain. Wea. Forecasting, 23, 1085-1101.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive Sampling with the Ensemble Transform Kalman Filter. Part I: Theoretical Aspects. Mon. Wea. Rev., 129, 420–436.
Buizza R., M. Miller, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the ECMwF EPS. Q. J. R. Meteo. Soc., 125, 2887-2908
──, and T. N. Palmer, 1995: The singular vector structure of the atmospheric general circulation. J. Atmos. Sci., 52, 1647–1681.
Burgers, G., P. J. van Leeuwen, and Evensen, 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 1719-1724.
Caine, N., 1980: The rainfall intensity-duration control of shallow landslides and debris flows. Geogr. Ann., 62A, 23-27.
Chang, C.-C., S.-C. Yang, and C. Keppenne, 2014: Applications of the mean recentering scheme to improve typhoon track prediction: A case study of Typhoon Nanmadol (2011). J. Meteor. Soc. Japan, 92, 559-584.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585.
Chien, F.-C., and B. J.-D. Jou, 2004: MM5 ensemble mean precipitation forecasts in the Taiwan area for three mei-yu seasons. Wea. Forecasting, 19, 735–750.
──, and H.‐C. Kuo, 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104, doi: 10.1029/2010JD015092.
Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982-2005.
──, L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman Filter Assimilation of Radar Observations of the 8 May 2003 Oklahoma City Supercell: Influences of Reflectivity Observations on Storm-Scale Analyses. Mon. Wea. Rev., 139, 272–294.
Du, J. and B. Zhou, 2011: A Dynamical Performance-Ranking Method for Predicting Individual Ensemble Member Performance and Its Application to Ensemble Averaging. Mon. Wea. Rev., 139, 3284–3303.
──, S. L. Mullen, and F. Sanders, 1997: Short-range ensemble forecasting of quantitative precipitation. Mon. Wea. Rev., 125, 2427–2459.
Ebert, E. E., 2001: Ability of a poor man′s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461-2480.
Eckel, F. Anthony, and M. K. Walters, 1998: Calibrated Probabilistic Quantitative Precipitation Forecasts Based on the MRF Ensemble. Wea. Forecasting, 13, 1132–1147.
Epstein, E. S., 1969: Stochastic dynamic prediction. Tellus, 21, 739–759.
Evensen, G., 1994: Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistic. J. Geophys Res., 99, 143-162
──, and P. J. van Leeuwen, 1996: Assimilation of Geosat Altimeter Data for the Agulhas Current using the Ensemble Kalman Filter with a Quasi-Geostrophic Model. Mon. Wea. Rev., 124, 85–96.
Fang, X. and Y.-H. Kuo, 2013: Improving Ensemble-Based Quantitative Precipitation Forecasts for Topography-Enhanced Typhoon Heavy Rainfall over Taiwan with a Modified Probability-Matching Technique. Mon. Wea. Rev., 141, 3908–3932.
Goerss, J. S., 2000: Tropical Cyclone Track Forecasts Using an Ensemble of Dynamical Models. Mon. Wea. Rev., 128, 1187–1193.
Gordon, N. J., D. J. Salmond, A. F. M. Smith, 1993: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEEE Proc. Radar Signal Process., 140 (2), 107–113.
Guzzetti, F., S. Peruccacci, M. Rossi, and C. P. Stark, 2008: The rainfall intensity-duration control of shallow landslides and debris flows: An update. Landslides, 5, 3-17.
Hamill, T. M., R. Hagedorn, and J. S. Whitaker, 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 2620–2632.
──, and J. S. Whitaker, 2006: Probabilistic Quantitative Precipitation Forecasts Based on Reforecast Analogs: Theory and Application. Mon. Wea. Rev., 134, 3209–3229.
──, and S. J. Colucci, 1998: Evaluation of Eta-RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126, 711–724.
Hoffman, R. N. and Kalnay, E., 1983: Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus A, 35A, 100–118.
Hong, J.-S., C.-T. Fong, L.-F. Hsiao, Y.-C. Yu, and C.-Y. Tzeng, 2015: Ensemble Typhoon Quantitative Precipitation Forecasts Model in Taiwan. Wea. Forecasting, 30, 217–237.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341.
Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796–811.
──, L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225–1242.
Hunt, E. J. K., and I. Szunyogh, 2007:Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112-126.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181.
Kalman, R. E., 1960: A new approach to linear filtering and prediction problems. Trans. ASME, Series D, J. Basic Eng., 82, 35-45.
Keppenne, C. L., 2014: An ensemble recentering Kalman filter with an application to Argo temperature data assimilation into the NASA GEOS-5 coupled model. Ocean Modelling, 77, 50-55.
Leith, C. E., 1974: Theoretical Skill of Monte-Carlo Forecasts. Mon. Wea. Rev., 102, 409–418.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065-1092.
Liou, Y.-C., T.-C. Chen Wang, Y.-C. Tsai, Y.-S. Tang, P.-L. Lin, and Y.-A. Lee, 2013: Structure of precipitating systems over Taiwan’s complex terrain during Typhoon Morakot (2009) as revealed by weather radar and rain gauge observations. J. Hydrology, 506, 14-25.
Lorenz, E. N., 1963: Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, 130–142.
──, 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17(3), 321–333.
Morrison H., G. Thompson, and V. Tatarskii, 2009: Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Wea. Rev., 137, 991–1007.
Mullen, S. L., and D. P. Baumhefner, 1988: Sensitivity to numerical simulations of explosive oceanic cyclogenesis to changes in physical parameterizations. Mon. Wea. Rev., 116, 2289–2329.
Nguyen, H. V., and Y.-L. Chen, 2011: High-Resolution Initialization and Simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463–1491.
Ott, E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2002: Exploiting local low dimensionality of the atmospheric dynamics for efficient ensemble Kalman filtering. http://arxiv.org/abs/physics/0203058v3.
──, B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2004: A local ensemble kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428.
Patil, D., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2001: Local low dimensionality at atmospheric dynamics. Phys. Rev. Lett., 86, 5878–5881.
Shrestha, D. L., D. E. Robertson, J. C. Bennett, and Q. J. Wang, 2015: Improving Precipitation Forecasts by Generating Ensembles through Postprocessing. Mon. Wea. Rev., 143, 3642–3663.
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. National Center for Atmospheric Research, Boulder, CO, USA, 113 pp.
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677.
Stensrud, D. J., H. E. Brooks, J. Du, M. S. Tracton and E. Rogers, 1999: Using Ensembles for Short-Range Forecasting. Mon. Wea. Rev., 127, 433–446.
──, J. Bao and T. Warner, 2000: Using initial condition and model physics perturbation in short-range ensemble simulations of mesoscale connective system. Mon. Wea. Rev., 128, 2077-2107.
Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642-1661.
──, and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 2364-2388.
Thompson, P. Duncan, 1977: How to Improve Accuracy by Combining Independent Forecasts. Mon. Wea. Rev., 105, 228–229.
Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble Square Root Filters. Mon. Wea. Rev., 131(7), 1485–1490.
Torn, R. D., G. J. Hakim, C. Snyder, 2006: Boundary Conditions for Limited-Area Ensemble Kalman Filters. Mon. Wea. Rev., 134, 2490–2502.
Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317– 2330.
Tsai, C.-C., S.-C. Yang, and Y.-C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: observing system simulation experiments. Tellus A, 66. doi: http://dx.doi.org/10.3402/tellusa.v66.21804.
Wang, C.-C., 2014: On the Calculation and Correction of Equitable Threat Score for Model Quantitative Precipitation Forecasts for Small Verification Areas: The Example of Taiwan. Wea. Forecasting, 29, 788–798.
──, H.-C. Kuo, T.-C. Yeh, C.-H. Chung, Y.-H. Chen, S.-Y. Huang, Y.-W. Wang and C.-H. Liu, 2013: High-resolution quantitative precipitation forecasts and simulations by the Cloud-Resolving Storm Simulator (CReSS) for Typhoon Morakot (2009). J. Hydrol., 506, 26–41. http://dx.doi.org/10.1016/j.jhydrol.2013.02.018.
──, ──, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 3172–3196.
Whitaker, J. S., and T. M. Hamill, 2002: Ensemble Data Assimilation without Perturbed Observations. Mon. Wea. Rev., 130, 1913–1924.
Wu, C.-C. , 2013: Typhoon Morakot: Key Findings from the Journal TAO for Improving Prediction of Extreme Rains at Landfall. Bull. Amer. Meteor. Soc., 94, 155–160.
Wu, L., J. Liang, and C.-C. Wu, 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 2208-2221.
Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768-788.
Yang S.-C., E. Kalnay and T. Miyoshi, 2012: Accelerating the EnKF Spinup for Typhoon Assimilation and Prediction, Wea. Forecasting, 27, 878–897.
──, K. J. Lin, T. Miyoshi, and E. Kalnay, 2013: Improving the spin-up of regional EnKF for typhoon assimilation and forecasting with Typhoon Sinlaku (2008). Tellus A, 65. doi: http://dx.doi.org/10.3402/tellusa.v65i0.20804.
Zhang, F., Y. Weng, Y.-H. Kuo, J.-S. Whitaker, and B. Xie, 2010: Predicting Typhoon Morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system. Wea. Forecasting, 25, 1816–1825.
指導教授 楊舒芝、廖宇慶(Shu-Chih Yang Yu-Chieng Liou) 審核日期 2015-12-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明