博碩士論文 996402601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.222.80.122
姓名 游愛諾(Akano Yhokha)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱
(Application of Persistent Scatterer Interferometry (PSI) in Western Himalaya: Uttarakhand state of India)
相關論文
★ 應用雷達干涉法在彰化縣員林地區地層下陷研究★ 應用太空大地測量法探討台南地區之地表變形
★ 應用地形分析方法研究台灣中央山脈東翼地表抬升★ 利用衛星影像萃取近岸地形-以台灣北部為例
★ 台灣西南部前陸地區演育與古應力分析★ 桃園臺地群地表變形與地下構造之研究
★ 應用永久散射體差分干涉法觀測台灣北部地區之地表變形★ 台灣東部縱谷南端之活動構造研究
★ Seismic hazard assessment in Taiwan: Insights from historical seismicity and radar interferometry analyses★ 台北盆地及周圍山區之現今地表變形研究
★ 利用永久性散射體差分干涉法探討台南地區之地殼形變★ 臺灣南部橫貫公路向陽-初來段之構造與邊坡穩定
★ 莫拉克風災山崩區域之地質構造與大地應力分析★ 台灣中部埔里盆地的構造活動: 衛星遙測和野外觀測
★ 恆春半島的構造地形演化★ 青藏高原東緣龍門山造山帶與四川前陸盆地間之構造演化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 喜馬拉雅山脈南段和其鄰近的恆河平原被許多活動斷層所截切,然而這些活動斷層所造成的地表變形度尚未有詳細的調查,尤其是在印度西北部的阿坎德邦區域。監測並找出阿坎德邦南部的現今地表變形,探討這些地表變形和區域構造的相關性,並探究這些機制為此篇論文的重點。我們利用2008年8月至2010年8月期間的ENVISAT衛星雷達影像,應用合成孔徑雷達永久散射體干涉的遙測分析技術,對研究區域進行地表變形分析。永久散射體干涉技術在山區或植披覆蓋區域,仍可針對穩定的物體如建築物、裸露的岩石、樹幹等獲取可信的地表訊息。
本研究觀察到一些顯著的地表變形,其中包括沿著研究區域內主要斷層的運動量如Ramgarh逆衝斷層(RT),Dhikala逆衝斷層(DT),喜馬拉雅前緣逆衝斷層(HFT)和帶有橫移分量的Garampani-Kathgodam斷層(G-KF)。G-KF為一邊界斷層,將本研究區劃分成兩個不同的區塊;在東側的地表變形以下陷為主,在西側則以抬升為主,兩側相對移動速率約為3~4毫米/年。本研究亦在西側的運載盆地內觀測到差異性的運動過程;Kota Dun以每年約3毫米的速率抬升,鄰近的Pawalgarh Dun則相對以2~3毫米/年的速率下陷,此觀測結果指出研究區內大部分的斷層仍在活動。根據觀測結果,我們建立研究區域的構造演化模型,以解釋現今地表變形及構造架構。
本研究第二部分著重於喜馬拉雅湖邊的奈尼塔爾(Nainital)小鎮之邊坡安定性的監控。奈尼塔爾小鎮在過去就經常發生毀滅性的塊體運動,而此研究揭示了湖東北側的Sher-Ka-Danda有沿著坡面的持續性滑移運動,滑移速率在坡頂處達到最高,約21毫米/年,在下坡處的滑移速率降至5毫米/年。我們根據滑移速率將Sher-Ka-Danda山坡分成四個不同的區塊,從最頂部到底部,分別為高滑移速率的H區塊,速率達21毫米/年;中滑移速率的M區塊,速率約為15~20毫米/年;低滑移速率的L區塊,速率為5~15毫米/年,以及穩定的S區塊,其滑移速率約大於5毫米/年。監測滑坡的穩定性是一個重要的議題,對於防災及減災工程皆極為有用。
透過永久散射體差分干涉技術可以更加瞭解研究區的活動構造,本研究所提出的地質構造模型是目前為止該地區最完整的模型。
摘要(英) The Himalaya and its adjoining Ganga (also called Gangetic) plain are traversed by a number of neotectonically active longitudinal and transverse faults. However, the pattern and extent of surface or crustal deformation induced by those active faults are not yet well known, especially in Uttarakhand state of India.
Therefore, in my doctorate work, I tried to monitor and map the present day surface deformation of southern Uttarakhand. And focused on understanding those surface deformation patterns and their relationship with tectonic setting of the region and also tried to identify the causes of those deformation. Multidate ENVISAT radar images dated from August 2008 to August 2010 of the area have been analysed by applying the latest Interferometric Synthetic Aperture Radar (InSAR) remote sensing technique of Persistent Scatterer Interferometry (PSI). PSI technique has the capability of extracting valuable surface information despite the natural challenges of vegetal cover or mountainous terrain if, there are any stable object like building, rock outcrop, tree trunk or boulder.
The study reveal some conspicuous surface deformation patterns, which are related to active movement along some of the major faults of the area, e.g. Ramgarh Thrust (RT), Dhikala Thrust (DT), Himalayan Frontal Thrust (HFT) and the transverse Garampani-Kathgodam Fault (G-KF). The G-KF acts as a segment boundary fault, dividing the study area into two distinct parts with relative subsidence in the east and uplift in the west at the rate of 3 to 4 mm/year. The study also reveal that the piggyback basin (Kota-Pawalgarh Duns) in the western side are still in the processes of evolution and showing differential movements; with Kota Dun uplifting at the rate of ~ 3mm/year and Pawalgarh Dun lying to the south of Kota Dun subsiding at the rate of ~ 2 to 3 mm/year. It also indicates that almost all the faults in the region are active. Based on it, a generalized tectonic model of the study area showing the present day tectonic setting has been created.
The second part of the dissertation concentrated on monitoring of slope instability in one of the Himalayan lake town, called Nainital. Nainital township has always been prone to mass movement and already witnesses devastating landslide in the past. The study reveal a continuous creep movement along the hill slope of Sher-Ka-Danda on the northeastern side of the lake. The creeping rate is as high as ~ 21 mm/year on the hill top and the creeping rate decreases downslope to ~ 5 mm/year. In this case we divided the Sher-Ka-Danda hill slope into four different zone based on the creeping rate, from top to bottom are; H zone, ~21 mm/year (high creeping rate), M zone, 15 ~ 20 mm/year (moderate creeping rate), L zone, 5 ~ 15 mm/year (low creeping rate) and S zone, > 5 mm/year (stable zone). Thus, monitoring of slope instability become very important so that possible measures can be taken in time to prevent any calamities in future.
This new study approach has benefited to a better understanding of the active tectonic in the area and I believe this tectonic model is the complete geological setting of the area till present.
關鍵字(中) ★ 喜馬拉雅
★ 合成孔徑雷達永久散射體干涉
★ 地表變形
★ 山崩
關鍵字(英) ★ Himalaya
★ PSI
★ Surface Deformation
★ landslide
論文目次 List of Figures……………………………………………………………….....v
List of Table……………………………………………………………….....xxi

Chapter 1………………………………………………………………………1
1.1. Introduction…………………………………………………………………………….3
1.2. Study area……………………………………………………………………………....5
1.3. Motivation…………………………………………………………………………...…8
1.4. Objective……………………………………………………………………………...11
1.5. Thesis roadmap………………………………………………………………….……13

Chapter 2 – Introduction to Himalayan Geology………………………......15
2.1. Introduction………………………………………………………………………...….17
2.2. Major tectonic subdivision of Himalaya……………………….………………..…….18
2.3. Ganga Plain……………………………………….………………..…………….……24
2.4. Seismological Aspects…………………………………………………………..….….28
2.5. Present day crustal deformation……………………………………………..….….…..35
2.6. Morphotectonic framework of our study area………………….……………………....40
Chapter 3 – Interferometry Synthetic Aperture Radar (InSAR)……..…..47
3.1. InSAR Background………………………………………………………….…..….....49
3.2. SAR terminologies…………………………………………….………………………53
3.3. Differential InSAR (DInSAR)………………………………………………………....56
3.4. Persistent Scatterer InSAR (PSI)……………………………….……………..……….62
3.4.1. PSI method…………………………………………………………………………....64

Chapter 4 – Data Information and Software…………………………...…..67
4.1. ENVISAT satellite Image……………………………………………………....…...…69
4.2. Digital Elevation Model (DEM)……………………………………………..….…..…72
4.3. Delft Institute for Earth Oriented Space Research (DEOS)………………….……..….72
4.4. StaMPS Software...........................................................................................................72

Chapter 5 – Application I: Monitoring Surface Deformation………….…75
5.1. Introduction……………………………..…………………………………………......77
5.2. Data Analysis……………………………………………..……………….……..……80
5.3. Result……………………………………………..………….………………..………86
5.4. Discussion………………………………………...………………………………..….90
5.5. Conclusion………………………….………………..…………………………..…..102
Chapter 6 – Application II: Monitoring Slope Instability……………..…103
6.1. Introduction…………………………………………………………………………..105
6.2. Geological Setting……………………………………………………………………112
6.3. Data Analysis………………………………………………….……..………………117
6.4. Result………………………………………………………….……………..………122
6.5. Discussion……………………………………………….………..………………….127
6.6. Conclusion…………………………………………………………….…….....…….133

Chapter 7 – Concluding Remarks…………………………………………135
7.1. Summary…………………………………………………..…………….…………...137
7.2. Limitations…………………………………………………..……….........................139
7.3. Future work……………………………………………………..………………...….140

Bibliography………………………………………………..……………....141

Appendix…………………………………………………..………………..167
A.1. Field Investigation………………………………………..…………...167
A.2. Monitoring surface deformation using ERS data set…………..……181
參考文獻 Adam, N., Kampes, B., Eineder, M., Worawattanamateekul, J., Kircher, M., (2003). The development of a scientific permanent scatterer system. Paper presented at ISPRS Hannover Workshop, Inst. for Photogramm. and Geoinf. Hannover, Germany.
Ader, T., Avouac, J.P., Zeng, J.L., Lyon-Caen, H., Bollinger, L., Gaetzka, J., Genrich, J., Thomas, M., Chanard, K., Sapkota, S.N., Rajaure, S., Sherstha, P., Ding, L., Flouzat, M., (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. Journal of Geophysical Research 117, B04403, doi: 10.1029/2011JB009071.
Agarwal. K.K., Singh, I.B., Sharma, M., Sharma, S., Rajgopalam, G., (2002). Extension tectonic activity in the craton war parts (peripheral bulge) of the Ganga plain foreland basin, India. International Journal of Earth Sciences (Geol. Rundsch) 91, 897-905.
Agarwal, K.K., Kumar, M.G., Srivastava, P., Singh, P.V., (2009). Active tectonics in and around Limin-Ziro, Lower Subassiri District, Arunachal Pradesh, NE India.
Ambraseys, N., Bilham, R., (2000). A note on the Kangra Ms=7.8 earthquake of 4th April 1905. Current Sciences 79, 45-50.
Ambraseys, N., Jackson, D., (2003). A note on early earthquake in northern Indian and southern Tibet. Current Sciences 84, 571-582.
Anbalagan, R., Kumar, R., Lakshmanan, K., Parida, S., Neethu, S., (2015). Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters 2:6, doi: 10.1186/s40677-014-009-y.
Arora, B.R., Gahalaut, V.K., Kumar, N., (2012). Structural control on alongstrike variation in the seismicity of the Northwest Himalaya. Journal of Asian Earth Sciences 57, 15-24.
Ashraf, Z., (1978). A geological report on the drilling explorations carried out for the study of Nainital hill slope stability, Nainital district, Uttar Pradesh. Geological Survey of India, unpublished report.
Auden, J.B., (1934). The geology of the Krol belt. Geological Survey of India Records 71, 357-454.
Auden, J.B., (1942). Geological report on the hill side of Nainital. Unpublished report. Geological Survey of India (GIS), Kolkata.
Ball, V., (1878). On the origin of Kumaun lakes, Records of Geological Survey of India 11, 174 82.
Banerjee, P., Bürgmann, R., (2002). Convergence across the northwest Himalaya from GPS measurments. Geophysical Research Letter 29 (13), doi: 10.1029/2002GL0151 84.
Barrtarya, S.K., Valdiya, K.S., (1989). Landslides in the catchment of the Gaula River, Kumaun Lesser Himalaya, India. Mountain Research and Development 9, 405-419.
Baruah, S., Hazarika, D., (2008). A GIS tectonic map of northeastern India. Current Science 95 (2).
Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., Ware, R.H., (1992). GPS meteorology: Remote sensing of atmospheric water vapour using the Global Positioning System. Journal of Geophysics Research 97 (D14), 15,787-15,801.
Bürgmann, R., Rosen, P.A., Fielding E.J., (2000). Synthetic Aperture Radar Interferometry to measure Earth’s surface topography and its deformation. Annual Rev. of Earth and Planetary Science 28, 169-209.
Bilham, R., (1995). Location and magnitude of the 1833 Nepal earthquake and its relation to the rupture zones of contiguous great Himalayan earthquake. Current Sciences 69, 155-187.
Bilham, R., Larson, K., Freymueller, J.T., project Idylhim members, (1997). GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386, 61-64.
Bilham, R., Blume, F., Bendick, R., Gaur, V.K., (1998). Geodetic constraints on the translation and deformation of India implications for future great Himalayan earthquakes. Current Science 74, 213-229.
Bilham, R., Gaur, V.K., Molnar, P., (2001). Himalayan seismic hazard. Science 293, 14421-1444.
Bilham, R., Wallace, K., (2005). Future Mw > 8 earthquakes in the Himalaya: implications from the 26 Dec 2004 Mw=0.9 earthquake on India’s eastern plate margin. Kangra 1905 Earthquake Centenary Conference, Palampur, India, 4-6 April 2005.
Bist, K.S., Sinha, A.K., (1980). Some observations on the geological and structural setup of Okhimath area in Garhwal Himalaya: a preliminary report. Himalayan geology 10, 467-475.
Burbank, D.W., Anderson, R.S., (2001). Tectonic geomorphology. Printed in the United State of America, 22-26.
Burchfiel, B.C., Chen, Z., Hodges, K.V., (1992). The south Tibet Detachment System, Himalayan orogeny: extension contemporaneous with and parallel to shortening in a collisional mountain belt. Geological Society of America Special Paper 269, 1.41.
Bürgmann, R., Rosen, P.A., Feilding, E.J., (2000). Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annual review of Earth and Planetary Sciences 28, 169-209.
Burtman, V., Molnar, P., (1993). Geological and Geophysical evidence for deep subduction of continental crust beneath the Pamir. Geological Society of America Special Papers, 281.
Census of India, (2011). Census of India 2001. Office of registrar general, New Delhi, India.
Champel, B., Van der, B.P., Mugnier, J.L., Leturmy, P., (2002). Growth and lateral propagation of fault-related folds in the Siwaliks of western Nepal: Rates, mechanisms, and geomorphic signature. Journal of Geophysics Research 107 (2111), 2-1-2-18.
Chang, C.P., Chen, K.S., Wang, C.T., Yen, J.Y., Chang, T.Y., Lin, C.W., (2004a). Application of Space Borne Radar Interferometry on crustal deformations in Taiwan: A perspective from the nature of events. Terrestrial, Atmospheric and Oceanic Science 15 (3), 523-543.
Chang, C.P., Wang, C.T., Chang, T.Y., Chen, K.S., Liang, L.S., Pathier, E., Angelier, J., (2004b). Application of SAR interferometry to a large thrusting deformation: The 1999 Mw = 7.6 ChiChi earthquake in Central Taiwan. International Journal of Geophysics 159, 9-16, doi: 10.1111/j.1365-246X.2004.02385.x.
Chang, C.P., Yen, J.Y., Hooper, A., Chou, F.M., Chen, Y.A., Hou, C.S., Hung, W.C., Lin, M.S., (2010). Monitoring of surface deformation in Northern Taiwan using DInSAR and PSInSAR techniques. Terrestrial, Atmospheric and Oceanic Science 21 (93), 447-461.
Chen, C.W., Zebker, H.A., (2001). Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. Journal of the Optical Society of America A 18, 338-351.
Chen, Q., Freymueller, J.T., Wang, Q., Yang, Z., Xu, C., Liu, J., (2004). A deforming block model for the present-day tectonics of Tibet. Journal of Geophysics Research 109, B01403, doi: 10.1029/2002JB002151.
Colesanti, C., Ferretti, A., Prati, C., Rocca, F., (2003). Monitoring landslide and tectonic motions with the permanent scatterer technique. Engineering Geology 86, 3-14.
Coulson, A.L., (1928). Report on the hill sides of Nainital. Geological Survey of India.
Crosetto, M., Arnaud, A., Duro, J., Biescas, E., Agudo, M., (2003). Deformation monitoring using remotely sensed radar interferometric data, paper presented at 11th International FIG Symposium on Deformation Measurements, Geod. and Geod. Appl. Lab., Department of Civil Engineering, Patras University, Santorini, Italy.
Curray, J.R., Emmel, F.J., Moore, D.G., Raitt, R.W., (1982). In the ocean basins and margins (erd Nairu, A.E.M. and Stehli, F.G.), Plenum, New York 6, 399-450.
Dahal, R.K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., Paudiyal, P., (2008). Predictive modeling of rainfall induced landslide hazard in Lesser Himalaya of Nepal based on weight of evidence. Geomorphology 102, 496-510.
Dasgupta, S., Ganguly, J., Neogi, S., (2004). Inverted metamorphic sequence in the Sikkim Himalayas: crystallization history, P-T gradient and implications. Journal of Metamorphic Geology, 22, 395-412.
DeCelles, P.G., Robinson, D.M., Quade, J., Ojha, T.P., Garzione, C.N., Cpeland, P., Upreti, B.N., (2001). Stratigraphy, structure and tectonic evolution of the Himalayan fold thrust belt in western Nepal. Tectonics, 20, 487-509.
Dewey, J.F., Bird, J.M., (1970). Mountain belts and new global tectonics. Journal of Geophysics Research 75, 2625-2647.
Dickinson, W.R., (1974). Plate tectonics and sedimentation. In: Dickinson, W.R. (Ed.). Tectonic and Sedimentation, Special Publ. 22: SEPM, Tulsa, Okla: 1-27.
Ding, X.L., Li, Z.W., Zhu, J.J., Feng, G.C., Long, J.P., (2008). Atmospheric effect on InSAR measurements and their mitigation. Sensors 8, 5426-5448, doi: 10.3390/s8095426.
Disaster Mitigation and Management Centre, (2011). Slope instability and geoenvironment issues of the area around Nainital. Disaster Mitigation and management Center, Dehradun, India, pp. 92.
Disaster Mitigation and Management Centre, (2013). Slope instability issues in the area around Mussoorie. Disaster Mitigation and Management Center, Dehradun, India, pp. 48.
European Space Agency, (2007). InSAR principles: Guidelines for SAR Interferometry processing and Interpretation. ESA publications
Ferretti, A., Prati, C., Rocca, F., (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosciences Remote Sensing 38, 2202-2212.
Ferretti, A., Prati, C., Rocca, F., (2001). Permanent scatterers in SAR interferometry. IEEE Transaction Geoscience Remote Sensing 39 (1), 8-20.
Gao, B.C., Kaufman, Y.J., (2003). Water vapour retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. Journal of Geophysics Research 108 (D13), 4389, doi: 10.1029/2002JD003023.
Gansser, A., (1964). The Geology of Himalayas. Inter-Science, New York, pp. 289.
Godin, L., Grujic, D., Law, R.D., Searle, M.P., (2006). Crustal flow, extrusion, and exhumation in continental collision zones: an introduction. In: Channel Flow, Ductile Extrusion, and Exhumation in Continental Collision Zones (eds Law, R.D., Searle, M.P., Godin, L.), Geological Society London Special Publications 268, 1-23.
Goldstein, R.M., Zebker, H.A., (1987). Interferometric radar measurement of ocean surface currents. Nature 328, 707-709.
Goldstein, R.M., Zebker, H.A., Werner, C.L., (1988). Satellite radar interferometry: two dimensional phase unwrapping. Radio Science 23, 713-720.
Goldstein, R.M., Engelhart, H., Kamb, B., Frolich, R.M., (1993). Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream. Science 262, 1525-1530.
Goswami, P.K., (2012). Geomorphic evidences of active faulting in the northwestern Ganga Plain, India: implications for the impact of basement structures. Journal of Geoscience 16 (3), 289-299.
Goswami, P.K., Pant, C.C., (2007). Geomorphology and Tectonics of Kota–Pawalgarh Duns, Central Kumaun Sub-Himalaya. Current Science 92 (5), 685-690.
Goswami, P.K., Pant, C.C., (2008). Tectonic evolution of Duns in Kumaun Sub-Himalaya, India: a remote sensing and GIS based study. International Journal of Remote Sensing 29 (16), 4721-4734.
Goswami, P.K., Pant, C.C., Pandey, S., (2009). Tectonic controls on the geomorphic evolution of alluvial fans in the Piedmont Zone of the Ganga Plain, Uttarakhand, India. Journal of Earth System Science 118 (3), 245-259.
Goswami, P.K., Yhokha, A., (2010). Geomorphic evolution of the piedmont zone of the Ganga plain, India: a study based on remote sensing, GIS and field investigation. International Journal of Remote Sensing 31, 5349-5364.
Goswami, P.K., (2012). Geomorphic evidences of active faulting in the northwestern Ganga Plain, India: implications for the impact of basement structures. Geoscience Journal 16 (3), 289-299.
Goswami, P.K., Deopa, T., (2013). Quaternary block tilting in southern Himalayan ranges of eastern Uttarakhand, India. Zeirschriftfiir Geomorphologie, doi: 10.1127/03/0372-8854/ 2012/ 0056-0093.
Goswami, P.K., Mishra, J.K., (2014). Tectonic and climatic controls on the Quaternary landscape evolution of the piedmont zone of the Ganga Plain, India. Zeitschrift Für Geomorphologie. Doi: 10.1127/0372-8854/2013/0126
Graham, L.C., (1974). Synthetic interferometer radar for topographic mapping. Proceedings of the IEEE 62, 763-768.g
Grandin, R., Doin, M.P., Bollinger, L., Puyssegur, B.P., Ducret, G., Jolivet, R., Sapkota, S.N., (2012). Long term growth of the Himalaya inferred from interseismic InSAR measurement. Geology, doi: 10.1130/G33154.1.
Grieshback, C.L., (1895). Notes on the Central Himalaya. Records of Geological Survey of India 26 (1), 19-25.
Gupta, R.P., Saha, A.K., Arora, M.K., Kumar, A., (1999). Landslide hazard zonation in a part of the Bhagirathi valley, Garhwal Himalaya, using intergrated remote sensing – GIS. Himalayan Geology 20, 71-85.
Gupta, H.K., Gahalaut, V.K., (2015). Can an earthquake of Mw ~ 9 occur in the Himalayan region? National Geophysical Research Institute.
Haigh, M.J., Rawat, J.S., Rawat, M.S., Bartarya, S.K., Rai, S.P., (1995). Interactions between forest and landslide activity along new highways in the Kumaun Himalaya. Forest Ecology and Management 78, 173-189.
Hanssen, R.F., (2001). Radar Interferometry: Data interpretation and error analysis. Kluwer Academic Publishers, TheNertherlands, 308.
Hashimi, N.H., Pathak, M.C., Jauhari, P., Nair, R.R., (1993). Bathymetric study of the Neotectonic Naini Lake in Outer Kumaun Himalaya. Journal of Geological Society of India 41, 91-104.
Heim, A., Gansser, A., (1939). Central Himalaya: Geological observations of the Swiss expedition, 1936: Memoirs of the Swiss Society of Natural Sciences 73, 245.
Hoffmann, J., (2003). The application of satellite radar interferometry to the study of land subsidence over developed aquifer systems, Ph.D. thesis, Stanford University.
Holland, T.H., (1897). Report on the geological structure and stability of hill slopes around Nainital. Geological Survey of India, unpublished report.
Hooper, A., (2006). Persistent scatterer radar interferometry for crustal deformation studies and modelling of volcanic deformation. Ph.D. thesis, Stanford University.
Hooper, A., (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysics Research Letter 35, L16, 302, doi: 10.1029/2008GL03465.
Hooper, A., (2010). A statistical-cost approach to unwrapping the phase of InSAR time series. European Space Agency, (Special Publication) ESA SP-677.
Hooper, A., Zebker, H., Segal, P., Kampes, B., (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysics Research Letter 31, L23611, doi:10.1029/2004GL021737.
Hooper, A., Segall, P., Zebker, H., (2007). Persistent Scatterer Interferometric synthetic aperture radar for crustal deformation analysis, with application to volcano alcedo, Galapagos. Journal of Geophysics Research 112, B07407, doi: 10.1029/2006JB00 4763.
Hukku, B.M., Jaitely, G.N., (1965-66). A geological report on the investigations of the stability of hill slopes around Nainital. Geological Survey of India, unpublished report.
Hukku, B.M., Srivastava, A.K., Jaitli, G.N., (1974). Evolution of lakes around Nainital and the problem of hillside instability. Himalayan Geology 4, 563-531.
Jade, S., Bhatt, B.C., Bendick, R., Gaur, V.K., Molnar, P., Anand, M.B., Kumar, D., (2004). GPS measurements from the Ladakh Himalaya, India: tests of plate-like or continuous deformation in Tibet. Geological Society of America Bulletin.
Jade, S., Mukul, M., Gaur, V.K., Kumar, K., Shrungeshwar, T.S., Satyal, G.S., Dumka, R.K., Jagannathan, S., Ananda, M.B., Kumar, P.D., Banerjee, S., (2014). Contemporary deformation in the Kashmir, Himachal, Garhwal and Kumaon Himalaya: significant insights from 1995-2008 GPS time series. Journal of Geodesy 88, 539-557.
Jain, V., Sinha, R., (2005). Response of active tectonics on the alluvial Baghmati River, Himalayan foreland basin, eastern India. Geomorphology 70, 339-356.
Jaitley, G.N., (1979-80). Progress report on the geotechnical investigations carried out for the instability of slopes around Nainital lake, district Nainital, Uttar Pradesh. Geological Survey of India, unpublished report.
Jiang, G., Blink, N.C., Kaufman, A.J., Dhiraj M., Banerjee, S., Rai, V., (2003). Carbonate platform growth and cyclicity at a terminal Proterozoic passice margin, Infra Krol formation and Krol group, Lesser Himalaya, India. Sedimentology 50, 921-952.
Jonsson, S., Zebker, H., Segall, P., Amelung, F., (2002). Fault slip distribution of the 1999 Mw 7.1 Hector mine, California, earthquake, estimated from satellite radar and GPS measurments. Bulletin of Seismological Society Am. 92, 1377-1389.
Joshi, M., (1999). Evolution of the Basal Shear Zone of the Almora Nappe, Kumaun Himalaya. Mem. Gond. Res. Gr. Mem. 6, 69-80.
Joshi, M., Tiwari, A.N., (2009). Structure events and metamorphic consequences in Almora Nappe, during Himalayan collision tectonics. Journal of Asian Earth Science 34, 326-335.
Kampes, B.M., (2005). Displacement parameter estimation using permanent scatterer interferometry. PhD. Thesis, Delf University of Technology, Delf, Netherlands.
Karunakaran, C., Rao, R.A., (1979). Status of exploration for hydrocarbons in the Himalayan region contribution to stratigraphy and structure. Journal of Geological Survey of India 41, 1-66.
Kayal, J.R., De, R., (1991). Microseismicity and tectonics in northeast India. Bulletin Seismological Society of America 81, 131-138.
Khattri, K.N., Chander, R., Gaur, V.K., Sarkar, I., Kumar, S., (1989). New Seismological results on the tectonics of the Garhwal Himalaya. Proc. Indian Academy Science. Journal of Earth Planetary Science 98, 51-109.
Kumar, S., Wesnousky, S.G., Rockwell, T.K., Ragona, D., Thakur, V.C., Seitz, G.G., (2001). Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India. Science 294, 2328-2331.
Kumar, S., Wenousky, S.G., Rockwell, T.K., Briggs, R.W., Thakur, V.C., Jayangondaperumal, R., (2004). The Himalayan frontal thrust of India is not blind. Journal of Geophysical Research, in the press.
Kumar, S., Wesnousky, S.G., Rockwell, T.K., Briggs, R.W., Thakur, V.C., Jayagondaperumal, R., (2006). Paleoseismic evidence of great surface rupture earthquake along the Indian Himalaya. Journal of Geophysics Research 111, B03304, doi: 10.1029/2004JB003309.
Lahiri, S.K., Sinha, R., (2012). Tectonic controls on the morphodynamics of the Brahmaputra River system in the upper Assam valley, India. Geomorphology 169-170, 74-85.
Larson, K.M., Brgmann, R., Bilham, R., Freymueller, J.T., (1999). Kinematics of the India-Eurasia collision zone from GPS measurements. Journal of Geophysics Research 104, 1077-1093.
Lave, J., Avouac, J.P., (2000). Active folding of fluvial terraces across the Siwalik Hills, Himalaya of central Nepal. Journal of Geophysics Research 105 (B3), 5733-5770.
Lave, J., Yule, D., Sapkota, S., Basant, K., Madden, C., Attal, M., Pandey, R., (2005). Evidence for a great medieval earthquake (1100 AD) in the Central Himalayas. Nepal Science 307, 1302-1305.
Lee, S.Z., (2014). Atmospheric correction in InSAR measurement: a study case from the western Himalaya, India. Master thesis. CRSRS, National Central University, Taiwan.
Li, Z., (2005). Production of regional 1km × 1km water vapor fields through the integration of GPS and MODIS data. paper presented at ION GNSS 2004, Institute of Navig., Long Beach, Calif., 21 -24.
Li, Z., Muller, J.P., Paul, C., (2005). Interferometric synthetic aperture radar (InSAR) atmospheric correction: GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR integration. Journal of Geophysics 110, B03410, doi: 10.1029/2004JB003446.
Liu, Y., Xu, C., Wen, Y., He, P., Jiang, G., (2012). Fault rupture model of the 2008 Dangxiong (Tibet, China) Mw 6.3 earthquake from Envisat and ALOS data. Advances in Space Research 50, 952-962.
Lyon-Caen, H., Molnar, P., (1985). Gravity anomalies, flexure of the Indian Plate and the structure, support and evolution of the Himalaya and Ganga basin. Tectonics 4 (6), 513-538.
Lyons, S., Sandwell, D., (2003). Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. Journal of Geophysics Research 108, B12047, doi: 10.1029/2002JB001831.
Massonnet, D., Rossi, M., Carmona, C., Adagna, F., Peltzer, G., Feigh, K., Rabaute, T., (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364 (8), 138-142.
Massonnet, D., Feigl, K.L., (1998). Radar interferometry and its application to changes in the Earth’s surface. Review of Geophysics 36 (4), 441-500.
Malik, J.N., Nakata, T., (2003). Active faults and related Late Quaternary deformation along the northwestern Himalayan Frontal Zone, India. Annual of Geophysics 46 (5), 917-936.
Malik, J.N., Nakata, T., Philip, J., Virdi, N.S., (2003). Preliminary observations from trench near Chandigarh, NW Himalaya and their bearing on active faulting. Current Science 85, 1793-1799.
Mandal, S., Robinson, D.M., Khanal, S., Das, O., (2014). Redefining the tectonostratigraphic and structural architecture of the Almora klippe and the Rangarh-Munsiari thrust sheet in NW India. Geological Society, London, Special publication, doi: 10.1144/SP412.6.
Medlicott, H.B., (1864). On the geological structure and relations of the southern portions of the Himalayan ranges between the Ganges and Ravee. Memoirs of the Geological Survey of India 3, 1-86.
Meisina, C., Zucca, F., Notti, D., Colombo, A., Cucchi, A., Bianchi, M., Colomba, D., Giannico, C., (2008). Potential and limitation of PSInSAR technique for landslide studies in the Piedmonte region (Northern Italy). Geophysical Research Abstracts, 10.
Mohindra, R., Parkash, B., Prasad, J., (1992). Historical geomorphology and pedology of the Gandak Megafan, Middle Gangetic Plains, India. Earth Surface Processes and Landforms 17, 643-662.
Molnar, P., (1984). Structure and tectonics of the Himalaya: constraints and implications of the geophysical data. Ann. Rev. Earth Planetary Science 12, 489-518.
Molnar, P., (1987). Inversion of profiles of uplift rates for the geometry of dip-slip faults at depth, with examples from the Alps and the Himalaya. Annals Geophysicae 5B, 663-670.
Molnar, P., Lyon-Caen, H., (1985). Some simple physical aspects of the support, structure, and evolution of mountain belts. Geological Society of America Special paper 218.
Molnar, P., Pandey, M.R., (1989). Rupture zones of great earthquakes in the Himalaya region. Earth Planetary Science 98, 61-70.
Molnar, P., Tapponnier, P., (1977). The collision between India and Eurasia. Sciences Am. 236, 30-41.
Middlemiss, C.S., (1890). Geological sketch of Nainital with some remarks on the natural conditions governing mountain slopes. Rec. Geological Survey of India 23.
Mukherjee, S., (2015). A review on out-of-sequence deformation in the Himalaya. Tectonics of the Himalaya, Geological Society of London.
Mukherjee, S., Carosi, R., Beck, P.V.D., Mukherjee, B.K., Robinson, D.M., (2015). Tectonics of the Himalaya: and introduction. Geological Society of London, special publication 412, doi: 10.1144/SP412.14.
Murthy, M.V.N., Talukdar, S.C., Bhattacharya, A.C., Chakrabarty, C., (1969). The Dauki fault of Assam. Bulletin Oil and Natural Gas Comm., 6 (2), 57-64.
Nakata, T., (1972). Geomorphic history and crustal movements of the foothills of the Himalaya. Tohoku University Science Reports 7th series, Japan 22, 39-177.
Nakata, T., (1989). Actives faults of the Himalaya of India and Nepal. The Geological Society of America, Special paper 232, 243-264.
Nautiyal, S.P., (1949). A note on the stability of certain hill sides in and around Nainital, Uttar Pradesh. Geological Survey of India Bulletin Series B 15 (2), Geological Survey of India, Calcutta.
Oldham, R.D., (1880). Note on the Nainital landslide 18th Sept 1880. Record of the Geological Survey of India 13, 277-281.
Pandey, B.W., (2002). Geoenvironmental Hazards in Himalaya. Naurang Rai for Mittal publications.
Pandey, M.R., Molnar, P., (1988). The distribution of intensity of the Bihar-Nepal earthquake of 15 January 1934 and bounds on the extent of the rupture zone. Journal of Geological Society of Nepal 5, 22-44.
Pant, C.C., Paul, A., (2007). Recent trends in seismicity of Uttaranchal. Journal of Geological Society of India 70, 619-626.
Pant, G., Kandpal, G.C., (1988-89). A report on the evolution of instability along Balia nala and adjoining areas, Nainital, Uttar Pradesh. Geological Survey of India, unpublished report.
Pant, P.D., Kothyari, G.C., Khayingshing, L., (2011). Neotectonics rejuvenation of the Garampani fault and South Almora Thrust: Outer Kumaun, Lesser Himalaya, Uttarakhand, India. AAPC Int. Conference and Exhibition, Milan, Italy.
Parkash. B., Kumar, S., Someshwar Rao, M., Giri, S.C., Kumar, S.C., Gupta, S., Srivastava, P., (2000). Holocene tectonic movements and stress field in the western Gangetic plains. Current Science 79, 438-449.
Pathak, V., Pant, C.C., Darmwal., G.S., (2013). Geomorphological and seismological investigations in a part of western Kumaun Himalaya, Uttarakhand, India. Geomorphology 193, 81-90.
Patriat, P., Achache, J., (1984). India-Eurasia collision chronology has implications for crustal shortening and driving mechanisms of plates. Nature, 31, 615-621.
Pathier, E., Fruneau, B., Deffontaines, B., Angelier, J., Chang, C.P., Yu, S.B., Lee, C.T., (2003). Coseismic displacements of the footwall of Chelungpu fault by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data. Earth Planetary Science Letter 212, 73-88.
Paul, J., Biirgmann, I.R., Gaur, V.K., Bilham, R., Larson, K.M., Ananda, M.B., Jade, S., Mukal, M., Anupama, T.S., Satyal, G., Kumar, D., (2000). The motion and active deformation of India. Geophysical Research Letters 28 (4), 647-650.
Paul, A., (2010). Evaluation and Implications of Seismic Events in Garhwal-Kumaun Region of Himalaya. Journal of the Geological Society of India 76 (4), pp. 414-418.
Ponraj, M., Miura, S., Reddy, C.D., Prajapati, S.K., Amirtharaj, S., Mahajan, S.H., (2010). Estimation of strain distribution using GPS measurements in the Kumaun region of Lesser Himalaya. Journal of Asian Earth Sciences 39, 658-667.
Ponraj, M., Miura, S., Reddy, C.D., Amirtharaj, S., Mahajan, S.H., (2011). Slip distribution beneath the Central and Western Himalaya inferred from GPS observations. International Journal of Geophysics 185, 724-736.
Raney, R.K., (1971). Synthetic aperture imaging radar and moving targets. IEEE Trans. Aero. Elect. Syst. AE S-7, 499-505.
Raiverman, V., Kunte, S.V., Mukherjee, A., (1983). Basin geometry, Cenozoic sedimentation and hydrocarbon prospects in Northwestern Himalaya and Indo-Ganhetic plains. Pet. Asia Journal 6, 67-92.
Raiverman, V., Srivastava, A.K., Prasar, D.N., (1993). Structural style in northwestern Himalayan foothills. In: Kumar, R., Ghosh, S.K., Phadtare, N.R. (Eds.), Siwalik Foreland basin of Himalaya. Himalayan Geology 15, 262-280.
Rao, M.B.R., (1973). The subsurface geology of the Indo-Gangetic Plains. Journal of Geological Society of India 14, 217-242.
Rautela, P., Khanduri, S., Bhaisora, B., Pande, K.N., Ghildiyal, S., Chanderkala, Badoni, S., Rawat, A., (2014). Implications of rapid land use/land cover changes upon the environment of the area around Nainital in Uttarakhand, India. Asian Journal of Environment and Disaster Management 6 (1), 83-93.
Rosen, P.A., Hensley, S., Joughin, I.R., (2000). Synthetic Aperture Radar Interferometry. Proceedings of the IEEE 88, 333-382.
Roy, P.S., Mondal, S.K., (2012). Multifractal analysis of earthquakes in Kumaun Himalaya and its surrounding region. Journal of Earth System Science 121 (4), 1033–1047.
Rupke, J., (1974). Stratigraphic and structural evolution of the Kumaun Lesser Himalaya. Sedimentary Geology 11 (2-4), 81-256.
Saklani, P.S., Bahuguna, V.K., (1986). Thrust tectonics of Garhwal Himalaya. In P.S. Saklani (Ed) Current trends in Geology-IX: Himalayan Thrusts and Associates rocks, 1-25.
Sarkar, S.N., Kehair, M.M., Sood, S.J., (1967). Tectonic patters of a part of Krol Nagthat belt around Nainital. Publication of the Centre of Advanced Studies in Geology, Panjab University 4, Chandigarh.
Sastri, V.V., Bhandari, L.L., Raju, A.T.R., Dutta, A.K., (1971). Tectonic framework and subsurface stratigraphy of the Ganga basin. Journal of Geological Society of India 12, 222-133.
Satyabala, S.P., Bilham, R., (2006). Surface deformation and subsurface slip of the 29 March 1999 Mw = 6.4 west Himalayan Chamoli earthquake from InSAR analysis. Journal of Geophysical Research Letters 33, L23305, doi: 10.1029/2006GL0274 22.
Scharroo, R., Visser, P., (1998). Precise orbit determination and gravity field improvement for the ERS satellite. Journal of Geophysical Research 103 (C4), 8113-8127.
Seeber, L., Armbruster, J., (1981). Great detachment earthquakes along the Himalayan Arc and long term forecasting. In: Simpson, D.W., Richards, P.G., (eds), Earthquake prediction: An international review, Maurice Ewing Seis. American Geophysics Union 4, 259-277.
Sharma, A.K., (1981). Structural study of area east of Nainital with special reference to the hillside instability. Unpublished PhD. Thesis, Kumaun University, Nainital, 126.
Sharma, V.K., (1998). A probabilistic approach of landslide zonation mapping in Garhwal Himalaya. 7th International Symposium on Landslide, Trondheim, Norway.
Simons, M., Rosen, P.A., (2007). Interferometric synthetic Aperture Radar Geodesy. Treatise on Geophysics 3, 391-443.
Singh, I.B., (1996). Geological evolution of Ganga plain- an overview. Journal of Paleontological Society of India 41, 99-137.
Singh, I.B., (2004). Late Quaternary history of the Ganga plain. Journal of Geological Society of India 64 (4), 421-454.
Singh, I.B., Ansari, A.A., Chandel, R.S., Misra, A., (1996). Neotectonic control on drainage system in Gangetic Plain, Uttar Pradesh. Journal of the Geological Society of India 47, 599-609.
Singh, I.B., Rai, V., (1983). Fauna and biogenic structures in Krol-Tal succession (Vendian-Early Cambrian), Lesser Himalaya and a biostratigraphic and palaeontological significance. Journal of Paleontological Society of India 28, 67-90.
Sinha, R., Tandor, S.K., Gibling, M.R., Bhattacharjee, P.S., Dasgupta, A.S., (2005). Late Quaternary geology and alluvial stratigraphy of the Ganga basin. Himalayan Geology 26 (1), 223-240.
Srivastava, A.K., (1967-68). Third progress report on the geological investigations of the stability of the hill slopes around Nainital, Uttar Pradesh. Geological Survey of India, unpublished report.
Srivastava, P., Mitra, G., (1994). Thrust geometries and deep structure of the outer and Lesser Himalaya, Kumaun and Garhwal (India): Implications for evolution of the Himalayan fold and thrust belt. Tectonics 13, 89-110.
State action plan on climate change, (2012). Government of Uttarakhand, supported by United Nations Development Programme, revised version, June 2012.
Stephenson, B.J., Waters, D.J., Searle, M.P., (2000). Inverted metamorphism and the main central thrust: field relations and thermobarometric constraints from the Kishtwar window, NW Indian Himalaya. Journal of Metamorphic Geology, 18, 571-590.
Stevens, V.L., Avouac, J.P., (2015). Interseismic coupling on the main Himalayan thrust. Geophysical Research Letters 42, 5828-5837, doi: 10.1002/2015GL064845.
Tewari, A.H., Mehdi, S.H., (1964). Geology of the Nainital Almora hills. Excursion guide A4, 22nd International Geological Congress, New Delhi, India.
Thakur, V.C., (2004). Active tectonics of Himalayan frontal thrust and seismic hazard to Ganga plain. Current Science 86, 1554-1560.
Thakur, V.C., Pandey, A.K., Suresh, N., (2007). Late Quaternary-Holocene evolution of Dun structure and the Himalayan Frontal Fault zone of the Garhwal Sub-Himalaya, NW India. Journal of Asian Earth Science 29 (2), 305-319.
Theobald, W., (1880). The Kumaun lakes. Records of the Geological Survey of India 13, 161 75.
Thomas, A.N., (1952). The origin of Kumaun lakes in the Himalayas. Geological Magazine 89, 385-400.
Tripathi, C., (1986). Siwaliks of the Indian subcontinent. Journal of the Paleontological Society of India, 1-8.
Upreti, B. N., (1990). An outline geology of far western Nepal. Journal of Himalayan Geology 1, 93-102.
Valdiya, K.S., (1976). Himalayan transverse faults and folds and their parallelism with subsurface structures of north Indian plates. Tectonophysics 32, 352-386.
Valdiya, K.S., (1978). The extension and analogue of the Chail Nappe in the Kumaun Himalaya. Indian Journal of Earth Sciences 5, 10-19.
Valdiya, K.S., (1980). The two intracrustal boundary thrusts of the Himalaya. Tectonophysics 66, 323-348.
Valdiya, K.S., (1988). Geology and natural environment of Nainital hills, Kumaun Himalaya. Gyanodaya Prakashan, Nainital, India, pp. 160.
Valdiya, K.S., Rana, R.S., Sharma, P.K., Dey, P., (1992). Active Himalayan Frontal Fault, Main Boundary Thrust and Ramgarh Thrust in southern Kumaun. Journal of the Geological Society of India 40, 509-528.
Valdiya, K.S., (1999). Reactivation of faults and active folds and geomorphic rejuvenation in eastern Kumaun Himalaya: Wider implications. Indian Journal Geology 71, 53-63.
Valdiya, K.S., (2001). Reactivation of terrane defining boundary thrusts in central sector of the Himalaya: implications. Current Science 81 (11), 1418-1431.
Valdiya, K.S., (2003). Reactivation of Himalayan Frontal Fault: Implications. Current Sciences 85 (7), 1031-1040.
Wang, H., Wright, T.J., (2012). Satellite geodetic imaging reveals internal deformation of western Tibet. Geophysical Research Letters 39, L07303, doi: 10.1029/2012GL051222.
Wang, Q., Zhang, P.Z., Freymueller, J.T., Bilham, R., Larson, K.M., Lai, X.A., (2001). Present day crustal deformation in China constrained by Global Positioning System measurements. Sciences 294, 574-577.
Werner, C., Wegmuller, U., Strozzi, T., Weismann, A., (2003). Interferometric point target analysis for deformation mapping. Paper presented at International Geoscience and Remote Sensing Symposium (IGRSS), Toulouse, France.
Wesnousky, S.G., Kumar, S., Mohindra, R., Thakur, V.C., (1999). Uplift and convergence along the Himalayan Frontal Thrust of India. Tectonics 18, 967-976.
Yeats, R.S., Nakata, T., Farah, A., Fort, M., Mirza, M.A., Pandey, M.R., Stein, R.S., (1992). The Himalaya Frontal Fault system. Annual Tectonics 6, 85-98.
Yen, J.Y., Chen, K.S., Chang, C.P., Boerner, W.M., (2007). Evaluation of earthquake potential and surface deformation by differential interferometry. Remote Sensing of Environment 112, 782-795.
Yen, J.Y., Lu, C.H., Chang, C.P., Hooper, A., Chang, Y.H., Liang, W.T., Lin, M.S., Chen, K.S., (2011). Investigating active deformation in the northern Longitudinal Valley and City of Hualien in eastern Taiwan using persistent scatterer and small baseline SAR interferometry. Terrestrial, Atmospheric and Oceanic Science 22 (3), doi:10.3319/TAO.2010.10.25. 01(TT).
Yhokha, A., Chang, C.P., Goswami, P.K., Yen, J.Y., Lee, S.I., (2015). Surface deformation in the Himalaya and piedmont zone of the Ganga plain, Uttarakhand, India: Determined by different radar interferometric techniques. Journal of Asian Earth Sciences 106, 119-129.
Zebker, H.A., Villasenor, J., (1992). Decorrelation in Interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing 30 (5), 950-959.
Zebker, H.A., Rosen, P.A., Goldstein, R.M., Gabriel, A., Werner, C.L., (1994). On the derivation of geoseismic displacement fields using differential radar interferometry: the earthquake. Journal of Geophysics Research 99, 19617-19634.
指導教授 張中白(Chang Chung-Pai) 審核日期 2016-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明