所別: 資工類

共6頁 第1頁

科目:

離散數學與線性代數

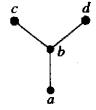
本科考試禁用計算器

*請在答案卷(卡)內作答

雄散數學(50%)

多選題 (每一小題答對給 1 分、答錯扣 1 分、不答 0 分)

- 1. What is the value of $\left[\left(\frac{1}{2} \right)^{\left[\frac{3}{2} \right]} \right]$?
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) 0.5
- 2. Let f and g be the function from the set of integers to itself, defined by f(x) = 2x + 1 and g(x) = 3x + 4. What is the composition of f and g (i.e., $f \circ g$)?
 - (a) 6x + 9
 - (b) 6x + 8
 - (c) 6x + 7
 - (d) 6x + 6
 - (e) 6x + 5
- 3. Compute 3³⁰² mod 5
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) 4
- 4. The following Hasse diagram represents a poset.



注:背面有試題

Which of the following matrices best represents the relation of this poset?

(a)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (e)
$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

所別: 資工類

共6頁 第2頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

- 5. Which of the following pairs between the graph and the number of its vertices is incorrect?
 - (a) $K_n = n(n-1)/2$
 - (b) C_n
 - (c) $W_n = n+1$
 - (d) $Q_n n2^{n-1}$
 - (e) $K_{m,n}$ mn
- 6. Among the following options, which are <u>necessary but not sufficient</u> conditions for the corresponding goals?
 - (a) "Existing an equivalence relation on a set S" for "can form a partition on S".
 - (b) Between 2 graphs G, H, both with n nodes: "Existing same number of length-1 ~ length-(n/2) paths" for "G is isomorphic to H".
 - (c) "Existing an 1-to-1 mapping from A to B" for "A and B have the same cardinality".
 - (d) "P is true" for " $P \rightarrow Q$ is true".
 - (e) "R is a partial-order set" for "R is a well-ordered set".
- 7. To analyze the complexity of the following procedure P, We will use the following assumptions: Suppose P and Q are both procedures. Q will take θ(³√m) time to partition a length-m array into length-[m/8] arrays, B₁, B₂,...,B₈, where m is the size of input; each statement line in and outside the loop counts 1 step.

Procedure $P(A[a_1,a_2,...,a_n])$

Declare $B_1, B_2, ... B_8$ as initially empty arrays;

- 1. if n < 8 exit.
- 2. call Q(A); /* and get $B_1, B_2, ... */$
- 3. call $P(B_1)$;
- 4. call $P(B_8)$;
- 5.return

注:背面有試題

Suppose n is a number of power of 8, What of the following options are true about the number of steps (p(n)) and complexity (C_p) of the procedure P in the question above?

(A, B are constants)

所別: 資工類

共6頁 第3頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

(a)
$$p(n) = 2p(n/8) + An^{1/3} + B$$

(b)
$$p(n) = 3p(n/8) + An^{1/2} + B$$

(c)
$$C_p = \theta(n \log n)$$

(d)
$$C_p = \theta(\sqrt[3]{n} \log n)$$

(e)
$$C_n = \theta(\sqrt[3]{n})$$

8. Suppose every element in A is different from others in A, and |A| = 7, $\alpha \in A$. What about the following set C is true?

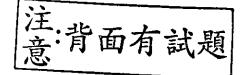
$$C = \{B \mid (((a \notin B) \to (\mid B \mid = 2)) \lor ((a \in B) \to (\mid B \mid = 3))) \land (B \subseteq A)\}$$

(a)
$$|C| = 2 \binom{6}{2}$$

(b)
$$|C| = {6 \choose 2} + {7 \choose 2}$$

(c)
$$|C| = \binom{6}{2} + \binom{7}{3}$$

- (d) $C \supseteq A$
- (e) |C| > |A|



9. The predicate G(x,y) means student x and y have the same grade. What can be the correct English statements for the logic expression –

"
$$\exists x, y, \forall z, (x \neq y) \land G(x, y) \land (G(x, z) \rightarrow ((x = y) \lor (x = z)))$$
."

- (a) Some student has the same grade with exactly one other student.
- (b) There are two students who have a certain same grade, and all other students do not have that same grade.
- (c) All students have either one or the other possible grades.
- (d) Every student can find exactly other one student that has the same grade.
- (e) No student can have the same grade as more than one other student.
- 10. What options are true when using generating function to solve the recurrence relation: $a_n = 2a_{n-1} a_{n-2} + 2^{n-2}$, $a_0 = 1$, $a_1 = 2$. (g(z) is the generating function)

所別: 資工類

共6頁 第4頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

- (a) g(z) = 1/(1-2z)
- (b) $g(z) = (1-2z+z^2)/(1-2z)$

(c)
$$g(z) = \frac{1}{\sqrt{5}} \cdot (\frac{1}{1 - ((1 + \sqrt{5})/2)z} - \frac{1}{1 + ((1 - \sqrt{5})/2)z})$$

- (d) $a_n = 2^n$
- (e) None of the above.

線性代數 (50%)

多重選擇題 (每一小題答對給1分、答錯扣1分、不答0分)

- 11. Define sum $\mathbf{u}+\mathbf{v}=(u_1+v_1, u_2+v_2, \dots u_n+v_n)$ and scalar multiple $k\mathbf{u}=(ku_1, ku_2, \dots, ku_n)$, where vectors $\mathbf{u}=(u_1, u_2, \dots, u_n)$, $\mathbf{v}=(v_1, v_2, \dots, v_n)$, and k is a scalar. Which of the following are subspaces of \mathbb{R}^3 ?
 - (a) All vectors of the form (a, 0, 0).
 - (b) All vectors of the form (a, b, c) where b=a+c.
 - (c) All vectors of the form (a, b, c) where $b=a\times c$
 - (d) All vectors of the form (a, 2a, 3a).
 - (e) All vectors of the form (a, 1, 3).
- 12. Suppose that A is a 5×6 matrix. Determine which of the following statements are true?
 - (a) The rank of A is at most 5.
 - (b) The rank of A^T is at most 5
 - (c) The number of parameters in the general solution of Ax=0 is at most 6.
 - (d) The nullity of A^T is at most 6.
 - (e) None of the above
- 13. A linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that

$$T(1, 1) = (1, 0, 1)$$
 and $T(2, 3) = (1, -1, 2)$.

Indicate which of the following statements are true?

- (a) T(14, 19) = (9, -5, 14)
- (b) T(3, 4) = (2, -1, 3)
- (c) T(4, 6) = (2, -2, 4)

注:背面有試題

所別: 資工類

共6頁 第5頁

科目:

離散數學與線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

- (d) T(0,1) = (0, -2, 6)
- (e) None of the above

14. Let
$$[T_1] = \begin{bmatrix} 1 & -2 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, $[T_2] = \begin{bmatrix} 1 & -3 & 4 \\ -1 & 1 & 1 \\ 1 & -2 & 5 \end{bmatrix}$, $[T_3] = \begin{bmatrix} 1 & 4 & -3 \\ 2 & 7 & 1 \\ 1 & 1 & 3 \end{bmatrix}$, and

$$\begin{bmatrix} T_4 \end{bmatrix} = \begin{bmatrix} 1 & 4 & -3 \\ 2 & 7 & 1 \\ 0 & 1 & 3 \end{bmatrix}.$$
 Which linear operators are one-to-one?

(a) T_1 (b) T_2 (c) T_3 (d) T_4 (e) None of the above.

注:背面有試題

15. Let
$$\mathbf{A} = \begin{bmatrix} -\sqrt{3}/2 & 1/2 \\ 0 & 0 \end{bmatrix}$$
, $\mathbf{B} = \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$, and $\mathbf{C} = \begin{bmatrix} 3 & 0 \\ 0 & -3 \end{bmatrix}$. Which of the

following are true?

- (a) Matrix A is the standard matrix for the composition of linear operators stated below: a counterclockwise rotation of 60° , followed by an orthogonal projection on the x-axis.
- (b) Matrix B is the stand matrix for the composition of linear operators stated below: a dilation with factor k=2, followed by a counterclockwise rotation of 45° .
- (c) Matrix C is the standard matrix for the linear operator defined below: a reflection about the x-axis, followed by a contraction with factor k=1/3.
- (d) Matrix C is the standard matrix for the linear operator defined below: a reflection about the x-axis, followed by a dilation with factor k=3.
- (e) None of the above.
- 16. If $n \times n$ matrix A has r distinct eigenvalues $\lambda_1, ..., \lambda_r, r < n$, then
 - (a) A is not diagonalizable.
 - (b) A has at most n eigenvectors.
 - (c) A is not invertible.
 - (d) A has at least r linearly independent eigenvectors.
 - (e) The sum of two eigenvectors may also be an eigenvector of A.

所別: 資工類

共6頁 第6頁

科目: 離散數學與線性代數

本科考試禁用計算器

*請在答案卷(卡)內作答

- 17. Let A be an $m \times n$ matrix with orthonormal columns. If W is a subset of \mathbb{R}^n and Wis the orthogonal complement of W, then
 - (a) If w is in Nul A (i.e., null space of A) and $v \cdot w = 0$, then v is in ColA (i.e., column space of A).
 - (b) W^{\perp} is always a subspace.
 - (c) $(W^{\perp})^{\perp} = W$.
 - (d) If v and w is orthogonal, then Av and Aw is orthogonal.
 - (e) $m \ge n$.
- 18. If A is a $n \times n$ matrix with real entries.
 - (a) A may have zero eigenvalues and eigenvectors.
 - (b) A has only real eigenvalues if A is symmetric.
 - (c) A can always be diagonalizable if A is symmetric.
 - (d) A can always be spectral decomposed if A is symmetric.
 - (e) $A^{T}A$ may have complex eigenvalues a+ib and a-ib.
- 19. If Ax = b is an inconsistent system and A is a $m \times n$ matrix.
 - (a) A has only r linearly independent columns, r < n.
 - (b) The least-square solution of \mathbf{A} is $(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$.
 - (c) A may have no least-square solution.
 - (d) If \hat{u} is a least-square solution of A, then $(b A\hat{u})$ is orthogonal to every row of A.
 - (e) If \mathbf{A} can be $\mathbf{Q}\mathbf{R}$ factorized, then the least-square solution can be calculated as $\mathbf{R}^{-1}\mathbf{Q}\mathbf{b}$.
- 20. Find a singular value decomposition $A = U\Sigma V^{T}$ with U and V being both orthogonal matrices, where $A = \begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$. Which values are **not** in U or V matrices?
 - (a) $1/\sqrt{2}$ (b) $1/\sqrt{3}$. (c) 1/2. (d) 1/3. (e) $1/(3\sqrt{2})$.

注:背面有試題