參考文獻 |
1. 林鄉鎮、魏健宏,「應用類神經網路與遺傳演算法構建小汽車跟車模式之研究」,運輸計畫季刊,第二十八卷,第三期,第353-378頁(1999)。
2. 吴志远、邵惠鹤、吴新余,「一种新的自适应遗传算法及其在多峰值函数优化中的应用」控制理论与应用,第十六卷,第一期(1999)。
3. 張維新,「用混合式基因演算法求解具容量限制之多點網路設計問題」,博士論文,交通大學資訊管理所(2000)。
4. 詹達穎,「模擬鍛鍊法求解車輛排程之探討」,中華民國運輸學會第九屆論文研討會論文集,第185-192頁(1994)。
5. 謝國倫,「基因演算法應用於捷運轉乘公車區位路徑問題之研究」,碩士論文,淡江大學運輸管理學系,台北(1998)。
6. 韓復華、卓裕仁,「門檻接受法、成本擾動法與搜尋空間平滑法在車輛路線問題之應用研究與比較分析」,運輸學刊,第九卷,第三期,第103-129頁(1996)。
7. 韓復華、林修竹,「TA與GDA巨集啟發式法在VRPTW問題上之應用」,中華民國第四屆運輸網路研討會,第83-92頁(1999)。
8. 韓復華、楊智凱,「門檻接受法在TSP問題上之應用」,運輸計劃季刊,第二十五卷,第二期,第163-188頁(1996)。
9. 韓復華、陳國清、卓裕仁,「成本擾動法在TSP問題之應用」,中華民國第二屆運輸網路研討會論文集,第283-292頁(1997)。
10. 韓復華、楊智凱、卓裕仁,「應用門檻接受法求解車輛路線問題之研究」,運輸計畫季刊,第二十六卷,第二期,第253-280頁(1997)。
11. 藍武王、邱裕鈞,「線性軸輻路網接駁卅轉運區位、路線與排班之規劃─遺傳演算法之應用」,第二十九卷,第三期,第465-493頁(2000)。
12. 顏上堯、周容昌、李其灃,「交通建設計畫評選模式及其解法之研究─以中小型交通建設計畫的評選為例」,運輸計畫季刊,第三十一卷,第一期(2002)。(已接受)
13. Abuali, F. N., Wainwright, R. L., and Schoenefeld D. A., “Determinant factorization: a new encoding scheme for spanning trees applied to the probabilistic minimum spanning tree problem,” Proceedings of The Sixth International Conference on Genetic Algorithms, pp. 470-477 (1995).
14. Ahuja, R. K., Maganti, T. L. and Orlin, J. B., Network Flows, Theory, Algorithms, and Applications, Prentice Hall, Englewood Cliffs (1993).
15. Alfa, A. S., Heragu, S. S. and Chen, M. “A 3-opt Based Simulated Annealing Algorithm for Vehicle Routing Problem,” Computers and Industrial Engineering, Vol. 21, pp. 635-639 (1991).
16. Amiri, A., and Pirkul, H., “New Formulation and Relaxation to Solve a Concave Cost Network Flow Problem,” Journal of the Operational Research Society, Vol. 48, pp. 278-287 (1997).
17. Balakrishnan, A., and Graves S. C., “A Composite Algorithm for a concave-cost network flow problem,“ Networks, Vol. 19, pp. 175-202 (1989).
18. Blumenfeld, D. E., Burns, L. D., Diltz, J. D., and Daganzo, C. F., “Analyzing Trade-offs Between Transportation, Inventory, and Production Costs on Freight Network,” Transportation Research, Vol. 19B, pp. 361-380 (1985).
19. Booker, L. B., “Improving Search in Genetic Algorithms,” Genetic Algorithms and Simulated Annealing (L. Davis, editor), Pitman, London, pp. 61-73 (1987).
20. Charon, I. and Hurdy, O., “The Noising Method: A New Method for Combinatorial Optimization,” Operations Research Letters, Vol. 14, pp. 133-137 (1993).
21. Cheng, C. P., Liu, C. W., and Liu, C. C., “Unit Commitment by Lagrange Relaxation and Genetic Algorithms,” IEEE Transactions on Power Systems, Vol. 15, No. 2 (2000).
22. Davis, L., “Genetic Algorithm and Simulated Annealing,” Morgan Kaufman Publishers, Los Altos, CA (1987).
23. Davis, L., “Adapting operator probabilities in genetic algorithms,” Proceedings of the Third International Conference on Genetic Algorithms, pp. 61-69 (1989).
24. DeJong, K. A., “Analysis of the Behavior of a Class of Genetic Adaptive Systems,” Ph.D. Dissertation, University of Michigan (1975).
25. Demeulemeester, E., Dodin, B. and Herroelen, W., “A Random Activity Network Generator,” Operations Research, Vol. 41, No. 5, pp. 972-980(1993).
26. Dueck, G., “New Optimization Heuristics: The Great Deluge Algorithm and the Record-to-Record Travel,” Journal of Computational Physics, Vol. 104, pp. 86-92 (1993).
27. Dueck, G., and Scheuer, T., ”Threshold Accepting: A General Purpose Optimization Algorithm Appearing Superior to Simulated Annealing,” Journal of Computational Physics, Vol. 90, pp. 161-175 (1990).
28. Dukwon, K., and Panos, M., “Dynamic Slope Scaling and Trust Interval Techniques for Solving Concave Piecewise Linear Network Flow Problems,” Networks, Vol. 35, pp. 216-222 (2000).
29. Gallo, G., Sandi C., and Sodini, C., “An Algorithm for the Min Concave Cost Flow Problem,” European Journal of Operation Research, Vol. 4, pp. 248-255 (1980).
30. Gallo, G., and Sandi, C., ”Adjacent Extreme Flows and Application to Min Concave Cost Flow Problems,” Networks, Vol. 9, pp. 95-121 (1979).
31. Gen, M., and Cheng, R., “Genetic Algorithms and Engineering Design”, Wiley Interscience Publication, MA (1997).
32. Glover, F., and Laguna, M., “Tabu search, Kluwer Academic Publishers,” Massachusetts (1997).
33. Glover, F., “Tabu Search, PartⅠ,” ORSA Journal on Computing Vol. 1, No. 3, pp.190-206 (1989).
34. Glover, F., “Tabu Search- Part II,” ORSA Journal on Computing, Vol. 2, No. 1, pp. 4-32 (1990).
35. Goldberg, D. E., “Genetic Algorithms in Search, Optimization, and Machine Learning,” Addison-Wesley, Reading MA (1989).
36. Golden, B. L., and Skiscim, C. C., “Using Stimulated Annealing to Solve Routing and Location Problems,” Naval Research Logistic Quarterly, Vol. 33, pp. 261-279 (1986).
37. Gu, J. and Huang, X., “Efficient Local Search with Search Space Smoothing: A Case Study of the Traveling Salesman Problem (TSP),” IEEE Transaction on Systems, Man and Cybernetics, Vol. 24, pp. 728-739 (1994).
38. Guisewite, G. M., and Pardalos, P. M., “A Polynomial Time Solvable Concave Network Flow Problems,” Networks, Vol. 23, pp. 143-147 (1993).
39. Hall, R. W., ”Direct Versus Terminal Freight Routing on Network with Concave Costs,” GMR-4517, Transportation Research Dept., GM Research Laboratories (1983).
40. Hillier, F. S., and Lieberman, G. J., “Introduction to Operation Research,” 7th ed., McGrow-Hill( 2000).
41. Jeffrey, A. J., and Christopher, R. H., “On the Use of Non-Stationary Penalty Functions to Solve Nonlinear Constrained Optimization Problems with GA’s,” Department of Industrial Engineering North Carolina State University, NC 27695-7906 (1994).
42. Jordan, W. C., “Scale Economies on Multi-Commodity Networks,” GMR-5579, Operating Systems Research Dept., GM Research Laboratories (1986).
43. Kershenbaum, A., “When Genetic Algorithms Work Best,” INFORMS Journal of Computing, Vol. 9, No. 3, pp.253-254 (1997).
44. Kirkpatrick, S., Gelatt , C. D., and Vecchi, M.P., “Optimization by Simulated Annealing,” Science, Vol. 220, pp. 671-680 (1983).
45. Klingman, D., Gelatt, C. D., and Stutze, J., “NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problem,” Management Science, Vol. 20, pp. 814-821(1974).
46. Kuhn, H. W., and Baumol, W. J., “An Approximate Algorithm for the Fixed-Charge Transportation Problem,” Naval Res. Logistics Quarterly, Vol. 9, pp. 1-16 (1962).
47. Larsson, T., Migdalas, A., and Ronnqvist, M., ”A Lagrange an Heuristic for the Capacitated Concave Minimum Cost Network Flow Problem,” European Journal of Operational Research, Vol. 78,pp. 116-129 (1994).
48. Mathias, K. E., and Whitley, L. D., “Initial performance comparisons for the delta coding algorithm,” The First IEEE Conference on Evolutionary Computation, Orlando, Florida (1994).
49. Nourie, F. J., and Guder, F., ”A Restricted-Entry Method for a Transportation Problem with Piecewise-Linear Concave Cost,” Computer & Operations Research, Vol. 21, pp. 723-733, (1994).
50. Osman, I. H., and Kelly, J. P., “Meta-Heuristics: An overview,” Meta-Heuristics: Theory & Applications, Kluwer Academic Publishers, Boston, London, Dordrecht, pp. 1-21 (1996).
51. Palmer, C. C. and Kershenbaum, A., “An Approach to a Problem in Network Design Using Genetic Algorithms”, Networks, vol. 26, pp151-163(1995).
52. Rech, P., and Barton, L. G., “A Non-Convex Transportation Algorithm,” Applications of Mathematical Programming Techniques, E. M. Beale, ed. (1970).
53. Reeves, C., “Genetic Algorithms for the Operations Researcher”, INFORMS Journal on Computing, Vol. 9, No. 3, pp. 231-250 (1997).
54. Reeves, C. R., “Improving the Efficiency of Tabu Search for Machine Sequencing Problems,” Journal of the Operation Research Society, Vol. 44, No. 4, pp. 375-382 (1993).
55. Robuste, F., Daganzo, C. F., and Souleyrette, R., “Implementing Vehicle Routing Models,” Transportation Research, Vol. 24B, No. 4, pp. 263-286 (1990).
56. Rudolph, G., “Convergence properties of canonical genetic algorithms,” IEEE Trans. Neural Networks, Vol. 5, pp. 96-101 (1994).
57. Seiichi, K., Maggie, K., and Wayne, W. D., “Genetic Simulated Annealing and Application to Non-slicing Floor plan Design,” Baskin Center for Computer Engineering & Information Sciences University of California, Santa Cruz, CA 95064 (1995).
58. Sheffi, M. J.,”Urban Transportation Networks:Equilibrium Analysis with Mathematical Programming Methods,” Prentical-Hall(1984).
59. Srinivas, M., and Patnaik, L. M., “Adaptive probabilities of crossover and mutation in genetic algorithms,” IEEE Trans Syst., Man, and Cybern, Vol. 24, pp. 656-667 (1994).
60. Suwan, R., and Sawased, T., “Link Capacity Assignment in Packet- Switched Networks: The Case of Piecewise Linear Concave Cost Function,” IEICE Trans. Commun., Vol. E82-B, No. 10 (1999).
61. Taguhi, T., Ida. K., Gen, M., “A Genetic Algorithm for Optimal Flow Assignment in Computer Network,” Computers ind. Engng, Vol. 35, No3-4, pp. 535-538(1998).
62. Thach, P. T., “A Decomposition Method Using A Pricing Mechanism for Min Concave Cost Flow Problems With a Hierarchical Structure,” Mathematical Programming, Vol. 53, pp. 339-359 (1992).
63. Thierens, D., and Goldberg D., “Elitist recombination: an integrated selection recombination GA,” The First IEEE Conference on Evolutionary Computation, Orlando, Florida (1994).
64. Yaged, B., “Minimum Cost Routing for Static Network Models,” Networks, Vol. 1, pp. 139-172 (1971).
65. Yan, S., and Luo, S. C., “A Tabu Search-based Algorithm for Concave Cost Transportation Network Problems,” Journal of the Chinese Institute of Engineers, Vol. 21, pp. 327-335 (1998).
66. Yan, S., and Luo, S. C., “Probabilistic Local Search Algorithms for Concave Cost Transportation Network Problems,” European Journal of Operational Research, Vol.117, pp. 511-521 (1999).
67. Zangwill, W. I., ”Minimum Concave Cost Flows in Certain Networks,” Management Science, Vol. 14, pp. 429-450 (1968). |