以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:227 、訪客IP:18.221.101.3
姓名 廖宜俊(Yi-Chun Liao) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 住家用電資料時空分析與樣式探勘
(Analysis of Household Power Consumption Data Sets Using Spatiotemporal and Sequence Data Mining)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 分析住宅內電器用電資料以尋找節電或浪費樣式,對於達到節能減碳目標至關重要,同時也能夠提供家戶更有效瞭解住宅整體狀況。隨著物聯網的發展,目前已有各式智慧插座能偵測與蒐集電器用電與附近環境資料,歐美各國也已公開家戶用電資料集合供各界研究。已公開的用電紀錄常取樣過於頻繁、未考慮電器所在空間、將電器與插座視為固定關係,及欄位設計不當等,造成不利於時空資料分析等問題。
本研究旨在提出一套通用的用電紀錄格式與相關分析模型,若能從建築中得到插座空間位置,套用本作法則能大幅縮減用電紀錄筆數卻不失真,可從中尋找特定用電樣式提醒住戶改變行為,最後以序列資料探勘(Generalized Sequential Patterns Mining, GSP)分析節電戶與浪費電戶的常見用電行為。
應用本作法於其他用電資料集合,可預期能讓住戶瞭解自身用電行為進而改善,與促進用電樣式分析技術的完備,未來物聯網架構下之住家能源管理系統也可以更經濟、更有效的方式分析用電紀錄。摘要(英) It is crucial to analyze residential appliance power consumption data in order to identify patterns of power-saving and power-wasting behaviors and to achieve the goals of energy saving and carbon reduction. Providing better understanding of entire residential power usage information to residents is of most importance. With the development of the Internet of Things (IoT) technology, a variety of smart power plugs can be used to measure and collect power usage data consumed by each appliance in a household. Several research reports on household electricity usage datasets have been published worldwide. However, problems such as sampling frequency, lack of room or location information, and ignorance of dynamic relationships between appliances and power sockets have not been adequately addressed in the literature. This research aimed at providing a commonly used electricity consumption form and a related analyzing tool. By applying the proposed method and tool, it can be expected that households may be able to better understand their power utilization behaviors and to make appropriate improvements, while also promoting completeness of power consuming patterns analysis. In the future, under the framework of IoT, home energy management system can facilitate a more economical and effective way to analyze power consuming records. 關鍵字(中) ★ 建築資訊模型
★ 資料探勘
★ 節電行為
★ 時空資料分析關鍵字(英) ★ Building Information Modeling
★ Data Mining
★ Energy-Saving Behaviors
★ Spatiotemporal Data Analysis論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1研究背景與動機 1
1.2研究問題與目的 2
1.3研究範圍與限制 2
1.4研究流程 3
1.5論文結構 4
第二章 文獻回顧 5
2.1前言 5
2.2 Microsoft Visual studio C# 6
2.3 PostgreSQL 7
2.4 Eclipse 7
2.5 Weka 7
2.6用戶活動萃取 8
2.6.1活動萃取標準 - AERO 8
2.6.2活動萃取標準 - 時間持續性 8
2.6.3活動萃取標準 - 位置識別 9
2.6.4活動萃取標準 - 屬性相似 9
2.6.5分析過程 10
2.7智能居家之節能系統 11
2.8序列樣式探勘 13
2.9獎勵式節能 13
2.10小結 14
第三章 研究方法 15
3.1系統規劃 15
3.2 UCI機器學習數據庫 16
3.2.1資料背景 16
3.2.2資料格式 16
3.2.3範例資料 17
3.3 KOM智慧能源資料集合 18
3.3.1資料背景 18
3.3.2資料格式 18
3.3.3範例資料 19
3.4 UMass追蹤數據庫 20
3.4.1資料背景 20
3.4.2資料格式 20
3.4.3範例資料 21
3.5資料欄位結構設計 22
3.6系統設計與實現 24
3.7資料來源轉檔與匯出 26
3.7.1資料來源 26
3.7.2資料前處理實現 29
3.7.3資料減量 32
3.8被動模式資料分析 33
3.8.1資料庫架構 33
3.8.2功率消耗數據分析 38
3.8.3最佳使用太陽能光伏系統分析 38
第四章 案例應用 39
4.1用電報表分析 39
4.1.1用電日報表 39
4.1.2用電周報表 40
4.2資料探勘 41
第五章 結論與建議 47
5.1結論 47
5.2建議 47
5.3貢獻 48
參考文獻 49
口試委員意見回應表 50參考文獻 1. Lee, M., Uhm, Y., Kim, Y., Kim, G., & Park, S. (2009). Intelligent Power Management Device with Middleware based Living Pattern Learning for Power Reduction. Ieee Transactions on Consumer Electronics, 55(4), 2081-2089.
2. Zayour, I., & Hamdar, A. (2016). A qualitative study on debugging under an enterprise IDE. Information and Software Technology, 70, 130-139.
3. Ellul, C. (2012). Can Free (and Open Source) Software and Data be Used to Underpin a Self-Paced Tutorial on Spatial Databases? Transactions in Gis, 16(4), 435-454.
4. Frenzel, L. (2007). Experience report: Building an Eclipse-based IDE for Haskell. Acm Sigplan Notices, 42(9), 220-222.
5. Tseng, W. T., Chiang, W. F., Liu, S. Y., Roan, J., & Lin, C. N. (2015). The Application of Data Mining Techniques to Oral Cancer Prognosis. Journal of Medical Systems, 39(5), 7.
6. Cho, H. S., Yamazaki, T., & Hahn, M. (2010). AERO: Extraction of User′s Activities from Electric Power Consumption Data. Ieee Transactions on Consumer Electronics, 56(3), 2011-2018.
7. Alhamoud, A., Ruettiger, F., Reinhardt, A., Englert, F., Burgstahler, D., D, B., . . . Steinmetz, R. (2014, 8-11 Sept. 2014). SMARTENERGY.KOM: An intelligent system for energy saving in smart home. Paper presented at the Local Computer Networks Workshops (LCN Workshops), 2014 IEEE 39th Conference on.
8. Pei, J., Han, J. W., Mortazavi-Asl, B., Wang, J. Y., Pinto, H., Chen, Q. M., . . . Hsu, M. C. (2004). Mining sequential patterns by pattern-growth: The PrefixSpan approach. Ieee Transactions on Knowledge and Data Engineering, 16(11), 1424-1440.
9. Guerassimoff, G., & Thomas, J. (2015). Enhancing energy efficiency and technical and marketing tools to change people′s habits in the long-term. Energy and Buildings, 104, 14-24.
10. Lichman, M. (2013). Machine Learning Data Sets, UCI Machine Learning Repository, Retrieved from http://archive.ics.uci.edu/ml (April 26, 2016).
11. Alaa Alhamoud, M. Sc. (2014). SMARTENERGY.KOM, KOM - Multimedia Communications Lab: SMARTENERGY.KOM, Retrieved from https://www.kom.tu-darmstadt.de/research-results/software-downloads/software/smartenergykom/ (April 26, 2016).
12. Marc Liberatore, (2013). UMass Trace Repository, Smart - UMass Trace Repository, Retrieved from http://traces.cs.umass.edu/index.php/Smart/Smart (April 26, 2016).指導教授 周建成(Chien-Cheng Chou) 審核日期 2016-7-27 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare