摘要(英) |
Taiwan is located along the circum-Pacific seismic zone where the earthquake happens frequently, structures will be threatened at any time. Therefore, the oil storage tanks and underground oil pipeline in the life cycle, in addition to the material by aging and long-term effects of atmospheric corrosion effects, often due to short-term load invasion earthquakes or typhoons and other natural disasters, which may result in reduced strength capacity. In addition, due to increased seismic hazard degree of oil storage tanks and underground oil pipeline and increased demand for seismic, Therefore, to meet the seismic design of the standards for the existing oil storage tanks and underground oil pipeline and to achieve the purpose of life extension, and seismic capacity assessment should be done to confirm the safety of oil storage tanks.
This study focused on seismic capacity of existing storage tanks of oil to establish a simple and a viable seismic assessment procedures, it is based on seismic demand of the newest building seismic design codes, and the program is divided into three stages. First is the preliminary assessment, according to tank and pipeline of the actual situation and the most recent test data in order to assess the project to form rating. The second stage is a detailed assessment (simple model), tank is reference to API650 to check the overall stability and stress by static and dynamic analysis, pipeline is reference to ASME B31.4 to check the stress of underground oil pipeline by static analysis. The third stage is a detailed assessment (complete model), to establish a complete model to the finite element analysis and inspected in accordance with the requirements of seismic design.
This study provides a computing programs of detailed assessment in accordance with the seismic assessment procedure (simplified model) , and hoping this assessment process to make the safety of oil storage tanks and underground oil pipelines can be fast and efficient. It can provide structural reinforcement of reference. This paper also collected seismic reinforcement methods of oil tank, which provides reference.
Keywords: oil storage tank、underground oil pipeline、seismic assessment、seismic reinforcement |
參考文獻 |
[1] API 650, “Welded storage tanks for oil storage”, American Petroleum Institute Standard, Washington, DC. (2007).
[2] ASCE7-10,“Minimum Design Loads for Buildings and Other Structures”, American Society of Civil Engineers, (2010).
[3] 國家地震工程研究中心,“銲接類儲油槽耐震設計指針(初稿)”,台灣,(2015)。
[4] 內政部營建署,“建築物耐震設計規範及解說”,台灣,(2011)。
[5] 許琳青等,“工廠危險物品室內外儲槽場所之耐震設計可行性評估研究”,內政部消防署委託研究報告,(2010)。
[6] 陳建忠等,“建築物耐震能力初步評估方法(Preliminary Seismic Evaluation of RC Building, PSERCB)”,內政部建築研究所,(2014)。
[7] 宋裕祺等, “鋼筋混凝土建築物耐震能力評估手冊-視窗化輔助分析系統SERCBWin2012”,內政部建築研究所,(2012)。
[8] 李天河,“鋼筋混凝土建築物耐震評估探討”,台灣省土木技師公會,(2002)。
[9] 劉季宇等,“自來水水管橋、藥槽及配水池之耐震評估研究案”,台北自來水事業處,(2014)。
[10] 財團法人工業技術研究院,“強震後快速評估石油輸儲設施受損與補強技術參考手冊”,經濟部能源局,(2013)。
[11] 林秋風、林俊臣、王在洋,“油槽耐震設計之研究”,石油季刊,第40卷第1期,第67-76頁,(2004)。
[12] 蔡錦勳、謝旻諺、羅俊雄,“土壤液化潛能分析”,國家地震工程研究中心 簡訊,第四十二期,第1-3頁,(2002)。
[13] 周立德,“耐震補強設計審查注意事項與工程常見缺失預防”,台南市政府,(2013)。
[14] 教育部,“建築物實施耐震能力評估及補強方案”,台灣,(2009)。
[15] 孙建刚、崔利富、张营、赵长军,“土与结构相互作用对储罐地震响应的影响”, 地震工程与工程振动,第30卷第3期,第141-146頁,(2010)。
[16] 施並良,“地上式LNG儲槽規範指定適用之研究”,中國石油股份有限公司液化天然氣工程處,(2013)。
[17] 孫建剛, “大型立式儲罐隔震-理論、方法及實驗”,科學出版社,北京,(2009)。
[18] Praveen K. Malhotra, “New method for seismic isolation of liquid storage tanks”, Earthquake Engineering and Structural Dynamics, Vol. 26, pp 839—847, (1997).
[19] Malhotra, P.K., Wenk, T., Wieland, M., “Simple procedure for seismic analysis of liquid storage tanks”, Structural Engineering, IABSE, Vol. 10, No.3, pp 197-201, (2000).
[20] Lisa Yunxia Wang , “Seismic analysis and design of steel liquid storage tanks”, CSA Academic Perspective , vol. 1, pp20-26, (2005).
[21] ASME-B31.4, “Pipeline transportation systems for liquid hydrocarbons and other liquids”, An American National Standard,(2009)
[22] American Lifelines Alliance, “Guideline for the design of buried steel pipe”, American Society of Civil Engineers(ASCE) and Federal Emergency Management Agency(FEMA), (2001).
[23] 國家地震工程研究中心, “液體管線系統耐震設計指針(初稿)”,台灣,(2014)。
[24] 葉錦勳、洪李陵、文慶霖,“瓦斯系統之耐震損害評估及應用”,國家地震工程研究中心,(2005)。
[25] 王信凱,“地下管線耐震分析與設計”,國立台灣科技大學營建工程系碩士論文,(2005)。
[26] 王志豪,“建築物管線與設備之耐震評估分析”,國立中央大學土木工程研究所碩士論文,(2005)。
[27] 社團法人日本道路協會,“道路橋之耐震設計的參考資料(案)”,日本,(2002)。
[28] Lanzano, G., Salzano, E., Magistris, F. S. D. and Fabbrocino, G., “Seismic vulnerability of gas and liquid buried pipelines”,Journal of Loss Prevention in the Process Industries, pp 72-78,(2014).
[29] Lanzano, G., Magistris, F. S. D., Salzano, E., and Fabbrocino, G.,“Vulnerability of Industrial Components to Soil Liquefaction”,The Italian Association of Chemical Engineering,vol.36, pp 421-426, (2014).
[30] 國家地震工程研究中心,“九二一集集大地震全面勘災精簡報告”, NCREE-99-033,台灣,(1999)。
[31] 张圣柱、吴宗、张健、多英全,“油气管道选线和风险评价相关法规与方法”,油氣儲運,第31卷第9期,第663-669頁,(2012)。
[32] Iwasaki, T., Arakawa, T., and Tokida, k., “Simplified procedures for assessing soil liquefaction during earthquakes.” soil dynamics and Earthquake Engineering Conference, Southampton, pp 925-939, (1982).
[33] Wells, D. L. and Coppersmith, K. j.,“ New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement”, Bulletin of the Seismological Society of America, Vol.84(4), pp974-1002,(1994).
[34] 中央地質調查所全球資訊網,取自http://www.moeacgs.gov.tw/main.jsp,(2016)。
[35] 中央氣象局全球資訊網,取自http://www.cwb.gov.tw/V7/index.htm,(2016)。 |