博碩士論文 103322005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:228 、訪客IP:18.118.154.250
姓名 曹哲瑋(Che-Wei Tsao)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用多項式摩擦單擺支承於不等高橋墩橋梁之研究
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 多項式摩擦單擺支承(Polynomial Friction Pendulum Isolator,PFPI) 為具變頻特性之新型摩擦單擺支承,其曲面函數為六次方多項式,利用回復勁度遞減之軟化段減緩結構加速度反應,亦可藉由回復勁度遞增之硬化段降低結構位移反應。過去研究已證實PFPI可發揮變頻特性,於近域與遠域震波皆發揮良好隔震效果。
以往之研究主要討論之目標橋梁皆為規則性橋梁,橋墩高度均相同,但不等高橋墩隔震橋梁中,不同高度橋墩之勁度皆不相同, PFPI需有不同設計已達最佳之隔震效果,因此分析相對複雜。本研究首先針對PFPI不等高橋墩隔震橋,發展數值分析方法,隨後進行振動台實驗,透過實驗結果與分析結果驗證,所發展之數值分析方法可以準確模擬PFPI不等高橋墩隔震橋梁於各地震波下之動力反應。此外,採用PSO-SA混合式演算法,針對振動台實驗用模型,搜尋PFPI之最佳支承參數,透過觀察PSO-SA多目標函數中各目標權重比例與結構物反應之關係圖,選擇合適權重下之最佳參數做為設計結構物之參考。由搜尋結果顯示,結構物反應皆能有效的達到PSO-SA目標函數所設定之目標。
摘要(英) The sliding surface of Polynomial Friction Pendulum Isolator (PFPI) is defined by a sixth-order polynomial function. The restoring force possesses a softening section and a hardening section. In the softening section, the restoring stiffness is decreasing in order to mitigate the structural acceleration response, while in the hardening section, the restoring stiffness is increasing so as to reduce the isolator drift. It has been proven that PFPI is not only able to effectively mitigate the structural seismic response induced by either long period near-fault earthquakes or far-field earthquakes.
Compared with typical isolated bridges, the isolated bridge with columns of irregular heights have different stiffness of columns, and the type of PFPI are also different, therefore the numerical analysis is more complicated. Then, conduct the series shaking table tests to study the PFPI isolated bridge with columns of irregular heights. The results show that the analysis method developed in this study does indeed simulates the results of experiments. Then find out the optimal parameters of PFPI by using PSO-SA hybrid algorithm. Through the changing of scalar weights which are in the object function, and choose the best parameters under the appropriate scalar weights as the reference of structures designed.
關鍵字(中) ★ 變曲率隔震支承
★ 變頻式隔震支承
★ 摩擦單擺支承
★ 不等高橋墩橋梁
★ 振動台實驗
關鍵字(英) ★ variable-curvature seismic isolator
★ various frequencies seismic isolator
★ bridges
★ shaking table test
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
誌謝 Ⅲ
目錄 Ⅳ
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1研究背景與動機 1
1.2文獻回顧 3
1.2.1近斷層震波特性與其對隔震結構之影響 3
1.2.2變頻式隔震支承 3
1.2.3不等高橋墩橋梁 4
1.3研究內容 5
第二章 多項式摩擦單擺支承 7
2.1支承力學行為 7
2.2多項式摩擦單擺支承之曲面函數及特性 11
第三章 數值分析模型與分析方法 17
3.1橋梁數值分析模型 17
3.2運動方程式推導 17
第四章 橋梁模型振動台實驗 31
4.1實驗設備與實驗試體 31
4.2實驗測量儀器及配置 33
4.3實驗室體系統識別 33
4.4輸入震波 34
4.5振動台實驗結果與討論 35
4.5.1實驗結果與數值模擬比對 35
4.5.2案例一與案例二比較與探討 37
4.5.3支承摩擦力改變之現象與討論 38
第五章 PFPI最佳參數搜尋及分析結果探討 102
5.1 PSO-SA混合式搜尋法 102
5.1.1最佳化問題數學模式之建立 102
5.1.2粒子群演算法(Particle Swarm Optimization, PSO) 103
5.1.3模擬退火法(Simulated Annealing,SA) 105
5.1.4 PSO-SA混合式搜尋法 106
5.2應用PSO-SA設計實驗用支承 108
5.2.1 PFPI搜尋參數 108
5.2.2 PSO-SA目標函數設定 109
5.2.3最佳參數搜尋結果與討論 110
5.3其他目標函數設定對搜尋結果之影響 112
5.3.1 PFPI搜尋參數 112
5.3.2 PSO-SA目標函數設定 112
5.3.3最佳參數搜尋結果與討論 114
第六章 結論與建議 138
6.1結論 138
6.2未來研究方向 139
參考文獻 141
附錄A 147
附錄B 153
參考文獻 1. Asher, J. W., S. N. Hoskere, R. D. Ewing, D. R. Van Volkinburg, R. L. Mayes and M. Button (1995) “Seismic performance of the base isolated USC University Hospital in the 1994 Northridge earthquake.” ASME, Pressure Vessels and Piping Division (Publication) PVP, Seismic, Shock, and Vibration Isolation, 139: 147-154.
2. Bozorgnia, Y., S. A. Mahin and A. G. Brady (1998) “Vertical response of twelve structures recorded during the Northridge earthquake,” Earthquake Spectra, 14(3), August, 411-432.
3. Celebi, M. (1996) “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” Structural Design of Tall Buildings, 5(2):95-109.
4. Fujita, T. (1998) “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1( 3), 295-300.
5. Kelly, J. M. (1998) “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285.
6. Martelli, A. and M. Forni (1998) “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294.
7. Basöz, N. I. and Kiremidjian, A. S. (1998). “Evaluation of bridge damage data from the Loma Prieta and Northridge, CA earthquakes.” Technical Report MCEER-98-0004, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1-35
8. Basöz N. I. and et al. (1999). “Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA Earthquake.” Earthquake Spectra, 15(1), 25-54.
9. Bruneau, M., Wilson, J. C. , and Tremblay, R. (1996). “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.” Canadian Journal of Civil, 23(3), 678-713.
10. Otsuka, H. and et al. (1997). “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.” Journal of Research, Public Works Research Institute, 33.
11. Kawashima, K. (2002). “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake.” Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197.
12. Kosa, K. and et al. (2001). “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.” A Workshop on Seismic Fault-induced Failures, 143-154.
13. Lee, G. C. and Loh, C. (1999). “Preliminary report from MCEER-NCREE workshop on the 921 Taiwan earthquake.” Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York.
14. Ghobarah, A. and Ali, H. M. (1988). “Seismic performance of highway bridges.” Engineering Structures, 10(3), 157-166.
15. K. Kawashima, “SEISMIC ISOLATION OF BRIDGES IN JAPAN”, Department of Civil Engineering, Tokyo Institute of Technology.
16. 唐治平,陳全和,「隔震橋梁位移控制」,結構工程,第八卷,第三期,pp.19-32,(1993)。
17. 唐治平,李維森,柯孝勳,「橋梁結構耐震、隔震及減震技術之應用研究」,結構工程,第十七卷,第二期,pp.33-52,(2002)。
18. Vasant A. Matsagar and R.S. Jangid, “Seismic Response of Simply Supported Base-Isolated Bridge with Different Isolators”, International Journal of Applied Science and Engineering, vol. 1, pp.53-69 (2006).
19. Bukle, I. G. and Mayes, R. L. (1990). “Seismic Isolation History, Application, and Performance-A World View.” Earthquake Spectra, 6(2), 161-201.
20. Kelly, J. M. (1986). “Aseismic base isolation: review and bibliography.” Soil Dynamics and Earthquake Engineering, 5(3), 202-216.
21. Koh, C. G. and Kelly, J. M. (1988). “A simple mechanical model for elastomeric bearings used in base isolation.” International Journal of Mechanical Sciences, 30(12), 933-943.
22. Naeim, F. and Kelly, J. M. (1999). Design of Seismic Isolated Structures: From Theory to Practice. John Wiley & Sons, inc.
23. 陳志宗“近斷層地震動的反應特性”,國立台北科技大學土木與防災所碩士論文(2006)。
24. Liao, W. I., Loh, C. H. and Wan, S. (2000). “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake.” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep. 18-20, Taipei, 371-380.
25. 張婉妮“近斷層震波對滑動隔震結構之影響”,高雄第一科技大學營建工程系碩士論文(2001)。
26. Pranesh, M. and Sinha, R. (2000). “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603-627.
27. Lu, L. Y., Shih, M. H. , and Wu, C. Y. (2004). “Near-fault seismic isolation using sliding bearings with variable curvatures.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3264.
28. 吳政彥“變曲率滑動隔震結構之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2004)。
29. 王健“變曲率滑動隔震防制近斷層震波之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2006)。
30. 董佩宜“應用多項式摩擦單擺支承之隔震橋梁研究”,國立中央大學土木系碩士論文(2010)。
31. 方嬿甄“考慮垂直效應之多項式摩擦單擺支承之分析與設計”,國立中央大學土木系碩士論文(2011)。
32. Lu, L. Y., Wang, J., and Yeh, S. W. (2007). “Experimental verification of polynomial friction pendulum isolator for near-fault seismic isolation.” The 4th International Structural Engineering and Construction Conference, Melbourne, Australia, 1065-1071.
33. Lu, L. Y., T. Y. Lee, S. Y. Juang, S. W. Yeh (2013) “Polynomial friction pendulum isolators (PFPIs) for building floor isolation: an experimental and theoretical study.” Engineering Structures, Vol. 56, 970-982, November.
34. Lu, L. Y., T. Y. Lee, S. W. Yeh (2011) “Theory and experimental study for sliding isolators with variable curvature.” Earthquake Engineering and Structural Dynamics, Vol. 40, No. 14, 1609-1627.
35. Chen, W.F. and Duan, L. 2000. Bridge Engineering Handbook, CRC Press LLC.
36. Priestley, M.J.N., Seible, F., and Calvi, G.M. 1996. Seismic design and retrofit of bridges, John Wiley and Sons, New York.
37. Calvi, G.M., and Pavese, A. 1997. Conceptual design of isolation systems for bridge structures. Journal of Earthquake Engineering, 1(1): 193-218.
38. Wang, Y. P., Chung, L. L., Liao, W. H. (1998). “Seismic response analysis of bridges isolated with friction pendulum bearing.” Earthquake Engineering and Structural Dynamics, 27, 1069-1093.
39. 曾旭玟“高分子材料於結構隔震技術之應用”,高雄第一科技大學營建工程系碩士論文(2004)
40. 莊玟珊“PSO–SA 混合搜尋法與其他結構最佳化設計之應用”,國立中央大學土木工程學系碩士論文(2007)。
41. Deb, K., Gulati, S., and Chakrabarti, S. (1998). “Optimal Truss-Structure Design Using Real-Coded Genetic Algoritms.” Proceedings of the Third Annual Conference, 479−486.
42. Kennedy, J. and Eberhart, R. C. (1995). “Particle swarm optimization.” Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1942-1948.
43. Eberhart, R. C. and Kennedy, J. (1995). “A new optimizer using particle swarm theory.” Proceedings of the Sixth International Symposium on Micro machine and Human Science, Nagoya, Japan, 39-43.
44. Eberhart, R. C. and Shi, Y. H. (2001). “Particle swarm optimization: developments, applications and resources.” Proceedings of IEEE International Conference on Evolutionary Computation, Seoul, Korea, vol. 1, 81-86.
45. Fourie, R. C. and Groenwould, A. A. (2002). “The particle swarm optimization algorithm in size and shape optimization.” Structural and Multidisciplinary Optimization, 23, 259-267.
46. Kirkpatrick, S. ,Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by Simulated Annealing.” Science, 220, No. 4598, 671-680.
47. Corana, A., Maechesi, M.,Martini, C., and Ridella, S. (1987). “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm.” ACM Transactions on Mathematical Software, 13(3), 262-280.
指導教授 李姿瑩 審核日期 2016-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明