博碩士論文 103328024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.143.241.152
姓名 江文淵(Wen-Yuan Chiang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 Megawatt 級合成氣固態氧化物燃料電池系統最佳化分析
(Optimal Analysis of Syngas Fed Solid Oxide Fuel Cell in Megawatt Systems)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究建立中溫質子傳導型固態氧化物燃料電池,利用Matlab搭配電化學模型計算燃料電池不同溫度下性能曲線,並應用商用軟體Simulink/Thermolib模擬不同系統配置各元件熱力學性質變化情形。本文系統入口端燃料有別於固態氧化物燃料電池常見的天然氣,以合成氣體取代之,同時利用產甲醇達到減碳之目的。本文一共有四個系統,其中系統A~C為產甲醇為主之系統,系統D為發電為主之系統。而操作變因為燃料當量比、Ratio數值(供應給燃料電池之比例)、水氣比例。
由於不同原料燃燒產生之合成氣體組成百分比不同,本研究將分成低氫氣型(40%H260%CO)與高氫氣型(80%H2+20%CO)並分成三大部分討論,(1)甲醇為主系統、(2)發電為主系統、(3)放大燃料電池發電量。
第一部分結果顯示,藉由適當氫氣分配搭配水煤氣轉化反應
器(Water Gas Shifting reactor)能提升系統效率,低氫氣型與高氫氣型分別提升21%和6%,同樣地,由於甲醇產量提升,低氫氣型與高氫氣型減碳率也分別提升15%和26%。第二部分結果顯示,將產甲醇為主系統中相同的燃料量,若改成完全發電之系統,低氫氣型與高氫氣型系統效率分別下降30%和23%。第三部分結果顯示,將燃料電池發電量由1 MW放大至100 MW,不管是低氫氣型或高氫氣型,系統效率都分別維持在57%和70%。
摘要(英) In this study, an intermediate-temperature proton-conducting solid oxide fuel cell is established. The electrochemical models were computed for fuel cell using Matlab. Also, The thermodynamic properties of different configurations were studied by Simulink/Thermolib software. In this thesis, the possibility of replacing nature gas with syngas for SOFC is explained. Methanol production can reduce the carbon release to atmosphere. There are four systems which system A~C are methanol-based and system D is power-based in this study. The operating parameters are fuel stoichiometric、ratio(supply to fuel cell)、steam ratio.
The composition of syngas varies with amount of the fuel used for combustion. So, the composition of the hydrogen in fuel is varied from low (40%H260%CO) to high (80%H2+20%CO). Study is performed by considering three parts: (1) methanol-based system (2) power-based system (3) enlarging the fuel cell power output.
Firstly, in System C, the fuel is passed through the water gas shifting reaction and the efficiency of fuel cell increases by 6% and 21% for low and high concentrations of hydrogen in fuel, when compared to system A. Along with the methanol production, reduction of carbon in reaction also increases by 15 % and 26%, respectively, for low and high concentration of hydrogen in fuel. Secondly, The same fuel flowrate maintained in system C is also considered for system D, the efficiency of the system is decreased by 30% and 23%, respectively, for low and high concentration of hydrogen in fuel, when compared to system C. Finally, the above simulations were performed for the fuel cell having an output of 1MW power. It is depicted from simulations that system C shows better efficiency compared to the other systems. So, system C is chosen for 100 MW power generation simulations. Finally, the efficiency of system C for 100 MW power generation is 57% and 70%, respectively, for low and high concentrations of hydrogen in fuel.
關鍵字(中) ★ 固態氧化物燃料電池
★ 甲醇合成反應
★ 碳捕捉
★ 渦輪機
關鍵字(英) ★ Solid oxide fuel cell
★ Methanol reaction
★ Carbon capture
★ Turbine
論文目次 致謝 I
摘要 III
ABSTRACT V
目錄 VII
符號表 XVIII
一般符號 XVIII
希臘符號 XIX
上標及下標符號 XIX
第一章 緒論 1
1.1 前言 1
1.2 固態氧化物燃料電池複合系統 9
1.2.1 固態氧化物燃料電池之工作原理 9
1.2.2 燃料電池極化損失現象 13
1.2.3 固態氧化物燃料電池結構 15
1.2.4 固態氧化物燃料電池系統 19
1.2.5 固態氧化物燃料電池的優缺點 20
1.2.6 熱回收系統 21
1.2.7 減碳系統 21
1.3 文獻回顧 22
1.3.1 SOFC 數學模型 22
1.3.2 SOFC系統 26
1.3.3 碳捕捉 28
1.4 研究動機與方向 31
第二章 理論分析 34
2.1 問題描述與分析 34
2.2 系統模擬 34
2.2.1 固態氧化物燃料電池模型 34
2.2.2 壓縮機 40
2.2.3 混和器 41
2.2.4 重組/合成反應器 41
2.2.5 熱交換器 42
2.2.6 微氣渦輪機(Micro gas turbine, MGT) 44
2.2.7 後燃器 44
2.2.8 氫氣傳輸膜(Hydrogen transport membrane, HTM) 45
2.2.9 三向閥 45
2.2.10 電源轉換器 DC/AC 46
2.2.11 效率定義 46
2.3 參數條件 47
第三章 程式驗證 49
3.1 程式驗證 49
第四章 結果與討論 53
4.1 質子傳導型固化物燃料電池性能曲線 53
4.2 系統比較與分析: 56
4.2.1產甲醇為主之系統 61
4.2.1.1 燃料當量比對於系統的影響 61
4.2.1.2 燃料分配對於系統的影響 75
4.2.1.3 燃料分配搭配燃料回收對於系統的影響 88
4.2.2 發電為主系統之分析 101
4.2.3 放大系統發電量與甲醇產量之影響探討 118
4.2.4 系統比較 128
第五章 結論與未來建議 129
5.1 結論 129
5.2未來建議 130
參考文獻 131
附錄 A 系統各節點之氣體組成表 138
參考文獻 [1] N. Zuo, M. Zhang, Z. Mao, Z. Gao, F. Xie, "Fabrication and characterization of composite electrolyte for intermediate-temperature SOFC," Journal of the European Ceramic Society, vol 31(16), pp.3103-3107, 2011
[2] M.G. Jung, Y.J. Kim, Y.G. Jung, H.T. Lim, "Measurement of hydrogen and oxygen chemical potential in yttria doped barium cerate (BCY) electrolyte of anode-supported protonic ceramic fuel cells,"International Journal of Hydrogen Energy, vol 39(29), pp.16576-16584, 2014
[3] E. Achenbach, "Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack," Journal of Power Source , vol 49, pp.333-348, 2001
[4] F. Zhao, A.V. Virkar, "Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters," Journal of Power Sources, vol. 141, pp.79-95, 2005.
[5] S.H. Chan, Z.T. Xia, "Polarization effects in electrolyte electrode supported solid oxide fuel cells_O-SOFC model," Journal of Applied Electrochemistry, vol 32, pp.339-347, 2002
[6] R. Suwanwarangkul, E. Croiset, M. W. Fowler, P.L. Douglas, E. Entchev, M.A. Douglas, "Performance comparison of Fick’s, dusty-gas and Stefan–Maxwell models to predict the concentration overpotential of a SOFC anode," Journal of Power Sources, vol 122(1), pp.9-18, 2010
[7] M.M. Hussain, X. Li, I Dincer, "Mathematical modeling of planar solid oxide fuel cells," Journal of Power Sources, vol 161(2), pp.1012-1022, 2006
[8] H.W. Chang, C.M. Huang, S.S. Shy, "An experimental investigation of pressurized planar solid oxide fuel cells using two different flow distributors," Journal of Power Sources, vol 250, pp.21-29, 2014
[9] D.J.L. Brett, A. Atkinson, N.P.Brandon, S.J. Skinner, "Intermediate temperature solid oxide fuel cells," Chem Soc Rev , vol 37(8), pp.1568-1578, 2008
[10] M. Ni, M.K.H. Leung, D.Y.C. Leung, "Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart," Fuel Cells, vol 7(4), pp.269-278, 2007
[11] M. Ni,"The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels," Int. Journal of Hydrogen Energy, vol 38(6), pp.2846-2858, 2013
[12] A. Demin, P. Tsiakaras, "Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor," Int. J. Hydrogen Energy, vol 26, no. 10, pp.1103–1108, 2001.
[13] A.K. Demin, P.E. Tsiakaras, V.A. Sobyanin, S.Y. Hramova, "Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor," Journal of Solid State Ionics , vol 152-153, pp.555-560, 2001
[14] M. Ni, D. Y. C. Leung, M. K. H. Leung,"Thermodynamic
analysis of ammonia fed solid oxide fuel cells: Comparison between
proton-conducting electrolyte and oxygen ion-conducting electrolyte," Joural of Power Sources, vol 183, pp.682–686, 2008.
[15] Y. Patcharavorachot, N.P. Brandon, W. Paengjuntuek, S. Assabumrungrat, A. Arpornwichanop, "Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte," Journal of Solid State Ionics, vol 181(35-36), pp.1568-1576, 2010
[16] H. Iwahara,"High temperature proton conducting oxides
and their applications to solid electricity fuel cell and steam electrolyzer for hydrogen production,"Solid State Ionics, vol 28, pp.573-578, 1998
[17] A. Arpornwichanop, Y. Patcharavorachot, S. Assabumrungrat, "Analysis of a proton-conducting SOFC with direct internal reformin,." Chemical Engineering Science , vol 65(1), pp.581-589, 2010
[18] J. Bu, P.G. Jonsson, Z. Zhao, "Ionic conductivity of dense BaZr0.5Ce0.3Ln0.2O3−δ (Ln = Y, Sm, Gd, Dy) electrolytes," Journal of Power Sources, vol 272, pp.786-793, 2014
[19] S. Wongchanapai, H. Iwai, M. Saito, H. Yoshida, "Performance evaluation of a direct-biogas solid oxide fuel cell-micro gas turbine (SOFC-MGT) hybrid combined heat and power (CHP) system," Journal of Power Sources , vol 223, pp.9-17, 2013
[20] C. Zamfirescu, I. Dincer,"Thermodynamic performance analysis and optimization of a SOFC-H+ system," Thermochimica Acta, vol 486(1-2), pp.32-40, 2009
[21] H. Xu, Z. Dang, B.F. Bai, "Analysis of a 1 kW residential combined heating and power system based on solid oxide fuel cell," Applied Thermal Engineering , vol 50(1), pp.1101-1110, 2013
[22] A. Choudhury, H. Chandra, A. Arora, "Application of solid oxide fuel cell technology for power generation—A review," Renewable and Sustainable Energy Reviews, vol 20, pp.430-442, 2013
[23] R. J. Braun, S.A. Klein, D.T Reindl, "Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications," Journal of Power Sources, vol 158(2), pp.1290-1305, 2006
[24] P. E. Santangelo, P. Tartarini,"Fuel cell systems and traditional technologies. Part I: Experimental CHP approach," Applied Thermal Engineering , vol 27(8-9), pp.1278-1284, 2007
[25] A. D. Hawkes, P. Aguiar, B. Croxford, M. A. Leach, C. S. Adjiman,
, N. P. Brandon,"Solid oxide fuel cell micro combined heat and power system operating strategy : Options for provision of residential space and water heating," Journal of Power Sources, vol 164, pp.260-271, 2007.
[26] M.C. Romano, V. Spallina, S. Campanari, "Integrating IT-SOFC and gasification combined cycle with methanation reactor and hydrogen firing for near zero-emission power generation from coal," Energy Procedia, vol 4, pp.1168-1175, 2011
[27] S. K. Park, J. H. Ahn, T. S. Kim, "Performance evaluation of integrated gasification solid oxide fuel cell/gas turbine systems including carbon dioxide capture," Applied Energy, vol 88, pp.2976–2987, Sep. 2011.
[28] N. S. Siefert, S. Litster, "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, vol 107, pp.315-328, 2013
[29] A. Lanzini, T.G. Kreutz, E. Martelli, M. Santarelli, "Energy and economic performance of novel integrated gasifier fuel cell (IGFC) cycles with carbon capture," International Journal of Greenhouse Gas Control,vol 26,169-184,2014
[30] S. Chen, N Lior, W. Xiang, "Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture," Applied Energy, vol 146, pp.298-312, 2015
[31] L. Barelli, A. Ottaviano, "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, vol 71, pp.118-129, 2014
[32] I. Ganesh, "Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review)," Renewable and Sustainable Energy Reviews, vol 31, pp.221-257, 2014
[33] S.G. Jadhav, P. Vaidya, B.M. Bhanage, "Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies," Chemical Engineering Research and Design, vol 92(11), pp.2557-2567, 2014
[34] H. Taghdisian, F. Farhadi, M.R. Pishvaie, "An optimization-oriented green design for methanol plants," Journal of Chemical Technology & Biotechnology, vol 87(8), pp.1111-1120, 2012
[35] D. Milani, R. Khalipour, G. Zahedi, A. Abbas, "A model-based analysis of CO2 utilization in methanol synthesis plant.", Journal of CO2 Utilization,vol 10,12-22,2015
[36] R. J. Pearson, M.D. Eisaman, J.W.G. Turner, P.P. Edwads, Z. Jiang, V. L. Kuznetsov, K.A. Littau, L.D. Marco, S.R.G. Taylor, "Energy Storage via Carbon-Neutral Fuels Made From CO2, Water, and Renewable Energy," Proceedings of the IEEE, vol 100(2), pp.440-460, 2012
[37] A. K. Sayah, A. K. Sayah, "Wind-hydrogen utilization for methanol production: An economy assessment in Iran," Renewable and Sustainable Energy Reviews, vol 15(8), pp.3570-3574, 2011
[38] R. J. Brau, S.A. Klein, D.T. Reindl, "Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential applications," Journal of Power Sources, vol 158(2), pp.1290-1305, 2006
[39] R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz,王曉紅、黃宏 譯,「燃料電池基礎」,全華科技圖書股份有限公司,2008

指導教授 曾重仁 審核日期 2016-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明