參考文獻 |
[1] Mayer-Schönberger; Kenneth Cukier (2013). Big Data: A Revolution that Will Transform how We Live, Work, and Think. Houghton Mifflin Harcourt. ISBN 0-544-00269-5
[2]Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META Group Research Note, 6.
[3] Tan, P.N., Steinbach, M., and Kumar, V., 2006, “Introduction to Data Mining.” Addison Wesley.
[4]Pyle, D., 1999,” Data Preparation for Data Mining.” Morgan Kaufmann
[5]Kotsiantis, S.B., Kanellopoulos, D. and Pintelas, P.E., 2006, “Data Preprocessing for Supervised Leaning.” Intermational Journal of Computer Science, vol.1, pp.1306-4428.
[6] Cano, J. R., Herrera, F., & Lozano, M. (2003). Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. Evolutionary Computation, IEEE Transactions on, 7(6), 561-575.
[7]Olvera-López, J. A., Carrasco-Ochoa, J. A., Martínez-Trinidad, J. F., & Kittler, J. (2010). A review of instance selection methods. Artificial Intelligence Review, 34(2), 133-143.
[8]A. Haro-Garcı´a and N. Garcı´a-Pedrajas, “A Divide-and-Conquer Recursive Approach for Scaling Up Instance Selection Algorithms,” Data Mining and Knowledge Discovery, vol. 18, no. 3, pp. 392-418, 2009.
[9] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Trans. Evol. Comput., vol. 1, pp. 67–82, Apr. 1997.
[10] Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Ullah Khan S (2015) The rise of “big data” on cloud computing: review and open research issues. Inform Syst 47:98–115. doi:10.1016/j.is.2014.07.006
[11] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A.H. Byers, Big data: The next frontier for innovation, competition, and productivity,(2011).
[12] P. Zikopoulos, K. Parasuraman, T. Deutsch, J. Giles, D. Corrigan, Harness the Power of Big Data The IBM Big Data Platform, McGraw Hill Professional,2012.
[13] J.J. Berman, Introduction, in: Principles of Big Data, Morgan Kaufmann, Boston, 2013,xix–xxvi (pp).
[14] Jie, L., Zheng, X., Yayun, J., & Rui, Z. (2014, 18-20 Aug. 2014). The overview of big data storage and management. Paper presented at the Cognitive Informatics & Cognitive Computing (ICCI*CC), 2014 IEEE 13th International Conference on.
[15] J. P. Dijcks. Oracle: Big data for the enterprise.Oracle White Paper, 2012.
[16] R. Rugina, M. Rinard, ”Recursion unrolling for divide and conquer programs”, in Proc. of 13th International Workshop on Languages and Compilers for Parallel Computing -LCPC’2000, NY, USA, August 2000, pp. 34-48.
[17] Domingos, P. (1996). Unifying instance-based and rule-based induction. Machine Learning, 24(2), 141-168.
[18] Derrac, J., García, S., & Herrera, F. (2010). A survey on evolutionary instance selection and generation.
[19] 譚磊,2013,大數據挖掘-從巨量資料發現別人看不到的秘密,台北 : 上奇時代
[20] Leyva, E., González, A., & Pérez, R. (2015). Three new instance selection methods based on local sets: A comparative study with several approaches from a biobjective perspective. Pattern Recognition, 48, 1523–1537. doi:10.1016/j.patcog.
2014.10.001.
[21] Wilson, D. R., & Martinez, T. R. (2000). Reduction techniques for instance-based learning algorithms. Machine Learning, 38(3), 257-286.
[22] Nikolaidis, K., Goulermas, J. Y., & Wu, Q. H. (2011). A class boundary preserving algorithm for data condensation. Pattern Recognition, 44(3), 704-715.
[23] Kuncheva, L. I., and S´anchez, J. S., 2008, “Nearest Neighbour Classifiers for Streaming Data with Delayed Labelling.” Eighth IEEE International Conference on Data Mining.
[24] Shmueli G, Patel NR, and Bruce PC. 2010. Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel with XLMiner, John Wiley & Sons, 2nd edition
[25] Garcı´a, S., Derrac, J., Cano, J.R., and Herrera, F., 2012, “Prototype Selection for Nearest NeighborClassification: Taxonomy and Empirical Study.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.34, no.3.
[26] J. Gou, L. Du, Y. Zhang, T. Xiong, A new distance-weighted k-nearest neighbor
classifier, J. Inform. Comput. Sci. 9 (6) (2012) 1429–1436.
[27] Ajmani, S.; Jadhav, K.; Kulkarni, S. A. Three-Dimensional QSAR Using the k-Nearest Neighbor Method and Its Interpretation. J. Chem. Inf. Model. 2006, 46, 24-31.
[28] Vapnik, V.N., 1995, “The Nature of Statistical Learning Theory.” Springer, New York.Williams, B. K., Nichols, J. D., and Conroy, M. J., 2002, “Analysis and management of animal populations.” London: Academic Press.
[29] Vapnik, V. N. (1999). An overview of statistical learning theory. Neural Networks, IEEE Transactions on, 10(5), 988-999.
[30] Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods: Cambridge university press.
[31] Dong, J.-x., Devroye, L., & Suen, C. Y. (2005). Fast SVM training algorithm with decomposition on very large data sets. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(4), 603-618.
[32] Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. doi: 10.1007/BF00994018
[33] Kuhn, H. W. (2014). Nonlinear programming: a historical view Traces and Emergence of Nonlinear Programming (pp. 393-414): Springer.
[34] Chen ZY, Tsai CF, Eberle W, Lin WC, Ke W-C (2014) Instance selection
by genetic-based biological algorithm. Soft Comput. doi:10.1007/
s00500-014-1339-0
[35] Li, J., Wang, Y.: A new fast reduction technique based on binary nearest neighbor tree. Neurocomputing 149, Part C (2015) 1647–657
[36] Senzhang Wang , Zhoujun Li , Chunyang Liu ,Xiaoming Zhang, Haijun Zhang(2014) Training data reduction to speed up SVM training. © Springer Science+Business Media New York 2014
[37] Hamidzadeh, J., Monsefi, R., & Yazdi, H. S. (2015). IRAHC: Instance Reduction Algorithm using Hyperrectangle Clustering. Pattern Recognition, vol. 48, pp. 1878–1889.
[38] I. Triguero, D. Peralta, J. Bacardit, S. García, F. Herrera, MRPR: a MapReduce
solution for prototype reduction in big data classification, Neurocomputing
150 (20) (2015) 331–345. |