參考文獻 |
[1] Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in databases: An overview. AI magazine, 13(3), 57.
[2] Silberschatz, A., Stonebraker, M., & Ullman, J. D. (1990). Database systems: Achievements and opportunities. ACM Sigmod Record, 19(4), 6-22.
[3] Cai, Y., Cercone, N., & Han, J. (1990, February). An attribute-oriented approach for learning classification rules from relational databases. In Data Engineering, 1990. Proceedings. Sixth International Conference on (pp. 281-288). IEEE.
[4] Han, J., Cai, Y., & Cercone, N. (1992, August). Knowledge discovery in databases: An attribute-oriented approach. In VLDB (Vol. 92, pp. 24-27).
[5] Han, J., Cai, Y., & Cercone, N. (1993). Data-driven discovery of quantitative rules in relational databases. Knowledge and Data Engineering, IEEE Transactions on, 5(1), 29-40.
[6] Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: an overview from a database perspective. Knowledge and data Engineering, IEEE Transactions on, 8(6), 866-883.
[7] Warnars, S. (2015). Mining Frequent and Similar Patterns with Attribute Oriented Induction High Level Emerging Pattern (AOI-HEP) Data Mining Technique.
[8] Warnars, H. L. H. S., Wijaya, M. I., & Tjung, H. B. (2016). Easy Understanding of Attribute Oriented Induction (AOI) Characteristic Rule Algorithm. International Journal of Applied Engineering Research, 11(8), 5369-5375.
[9] Han, J., & Fu, Y. (1996). 16 Exploration of the Power of Attribute-Oriented Induction in Data Mining.
[10] Cai, Y. (1989). Attribute-oriented induction in relational databases (Doctoral dissertation, Simon Fraser University).
[11] Carter, C. L., & Hamilton, H. J. (1998). Efficient attribute-oriented generalization for knowledge discovery from large databases. Knowledge and Data Engineering, IEEE Transactions on, 10(2), 193-208.
[12] Cheung, D. W., Hwang, H. Y., Fu, A. W., & Han, J. (2000). Efficient rule-based attribute-oriented induction for data mining. Journal of Intelligent Information Systems, 15(2), 175-200.
[13] Huang, S. M., Hsu, P. Y., & Wang, W. C. (2012). A study on the modified attribute oriented induction algorithm of mining the multi-value attribute data. In Intelligent Information and Database Systems (pp. 348-358). Springer Berlin Heidelberg.
[14] Chen, Y. L., & Shen, C. C. (2005). Mining generalized knowledge from ordered data through attribute-oriented induction techniques. European Journal of Operational Research, 166(1), 221-245.
[15] Wu, Y. Y., Chen, Y. L., & Chang, R. I. (2011). Mining negative generalized knowledge from relational databases. Knowledge-Based Systems, 24(1), 134-145.
[16] Muyeba, M. K., Crockett, K., Wang, W., & Keane, J. A. (2014). A hybrid heuristic approach for attribute-oriented mining. Decision Support Systems, 57, 139-149.
[17] Chen, Y. L., Wu, Y. Y., & Chang, R. I. (2012). From data to global generalized knowledge. Decision Support Systems, 52(2), 295-307.
[18] Knorr, E. M., & Ng, R. T. (1996, August). Extraction of Spatial Proximity Patterns by Concept Generalization. In KDD (pp. 347-350).
[19] Wang, L. Z., Zhou, L. H., & Chen, T. (2004, August). A new method of attribute-oriented spatial generalization. In Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on (Vol. 3, pp. 1393-1398). IEEE.
[20] Lee, K. M. (2001, July). Mining generalized fuzzy quantitative association rules with fuzzy generalization hierarchies. In IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th (pp. 2977-2982). IEEE.
[21] Raschia, G., & Mouaddib, N. (2002). SAINTETIQ: a fuzzy set-based approach to database summarization. Fuzzy sets and systems, 129(2), 137-162.
[22] Angryk, R., & Petry, F. E. (2005, May). Mining multi-level associations with fuzzy hierarchies. In Fuzzy Systems, 2005. FUZZ′05. The 14th IEEE International Conference on (pp. 785-790). IEEE.
[23] Lee, D. H., & Kim, M. H. (1997). Database summarization using fuzzy ISA hierarchies. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 27(1), 68-78.
[24] Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
[25] Han: Data Mining-Concepts and Techniques 3/E
[26] Taşdemir, K. (2012). Vector quantization based approximate spectral clustering of large datasets. Pattern Recognition, 45(8), 3034-3044.
[27] Aliguliyev, R. M. (2009). Performance evaluation of density-based clustering methods. Information Sciences, 179(20), 3583-3602.
[28] D’hondt, J., Vertommen, J., Verhaegen, P. A., Cattrysse, D., & Duflou, J. R. (2010). Pairwise-adaptive dissimilarity measure for document clustering.Information Sciences, 180(12), 2341-2358.
[29] Hogenboom, F., Frasincar, F., Kaymak, U., de Jong, F., & Caron, E. (2016). A Survey of event extraction methods from text for decision support systems. Decision Support Systems, 85, 12-22.
[30] Golsefid, S. M. M., Zarandi, M. F., & Turksen, I. B. (2016). Multi-central general type-2 fuzzy clustering approach for pattern recognitions. Information Sciences, 328, 172-188.
[31] Kalhori, M. R. N., & Zarandi, M. F. (2015). Interval type-2 credibilistic clustering for pattern recognition. Pattern Recognition.
[32] Mehrabani, M., & Hansen, J. H. (2013). Singing speaker clustering based on subspace learning in the GMM mean supervector space. Speech Communication, 55(5), 653-666.
[33] Wang, D., Vogt, R., & Sridharan, S. (2013). Eigenvoice modelling for cross likelihood ratio based speaker clustering: A Bayesian approach. Computer Speech & Language, 27(4), 1011-1027.
[34] Cobos, C., Muñoz-Collazos, H., Urbano-Muñoz, R., Mendoza, M., León, E., & Herrera-Viedma, E. (2014). Clustering of web search results based on the cuckoo search algorithm and Balanced Bayesian Information Criterion.Information Sciences, 281, 248-264.
[35] Anupama, D. S., & Gowda, S. D. (2015). Clustering of Web User Sessions to Maintain Occurrence of Sequence in Navigation Pattern. Procedia Computer Science, 58, 558-564.
[36] Coelho, A. L., Fernandes, E., & Faceli, K. (2011). Multi-objective design of hierarchical consensus functions for clustering ensembles via genetic programming. Decision Support Systems, 51(4), 794-809.
[37] Combes, C., & Azema, J. (2013). Clustering using principal component analysis applied to autonomy–disability of elderly people. Decision Support Systems, 55(2), 578-586.
[38] Yang, Y., Tan, W., Li, T., & Ruan, D. (2012). Consensus clustering based on constrained self-organizing map and improved Cop-Kmeans ensemble in intelligent decision support systems. Knowledge-Based Systems, 32, 101-115.
[39] Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. Neural Networks, IEEE Transactions on, 16(3), 645-678.
[40] Dao Lam, Donald C. Wunsch. (2014). Academic Press Library in Signal Processing: Volume 1 — Signal Processing Theory and Machine Learning, Pages 1115–1149.
[41] Heinonen, O., & Mannila, H. (1996). Attribute-oriented induction and conceptual clustering. Departement of Computer Science, University of Helsinki, Finland.
[42] Muyeba, M., Khan, M. S., & Gong, Z. (2007). On Clustering Attribute-oriented Induction. In Research and Development in Intelligent Systems XXIII (pp. 403-407). Springer London.
[43] Sautot, L., Faivre, B., Journaux, L., & Molin, P. (2015). The hierarchical agglomerative clustering with gower index: a methodology for automatic design of olap cube in ecological data processing context. Ecological Informatics, 26, 217-230.
[44] Wei, C. P., Yang, C. S., & Hsiao, H. W. (2008). A collaborative filtering-based approach to personalized document clustering. Decision Support Systems, 45(3), 413-428. |