以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:76 、訪客IP:52.14.204.156
姓名 陳泓瑜(Hung-Yu Chen) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 專為妥瑞症患者聲語型抽動設計之減音口罩
(Sound suppression mask specifically designed for minimizing tics impulse acoustics of Tourette’s patients)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 妥瑞症(Tourette patients)是一種遺傳性的神經生理疾病。在美國約有10-20萬人罹患此疾病。大約有1百萬名美國人可能有非常輕微的妥瑞症症狀,台灣則是每200名兒童就有1人患有此病。妥瑞症患者的身體會出現不自主的、重複的動作,稱為動作型抽動(motor tics),以及不自主地發出怪聲,此為聲語型抽動(vocal tics),部份兒童甚至會出現罵穢語的現象。
工程上用吸音方法來減少噪音是相當普遍的,當聲波入射到物體的表面時,部分聲波會反射,而另一部分的聲波會進入物體內部,進而被物體所吸收並且轉化成熱能,聲波能量被物體吸收的現象稱為吸音。其實、物體多少都具有吸音的效果,但是只有較強吸音能力的結構(sound-absorbing structure)或材料(sound-absorbing material),才可以在工程上被實際使用。就目前工程上被廣泛應用的有兩大原理:(1)共振吸音結構(acoustic resonance structure)、它是利用入射聲波在結構內產生共振效果,進而消耗它的能量、但也是利用了共振原理,因此吸音的頻段較窄、(2)多孔性吸音材料(porous sound-absorbing material) 構成的吸音材料,其中又以紡織結構中擁有吸音功能之複合型材料、最常在公寓、汽車、精密儀器被使用,其優勢是、它能夠吸收更多種類之頻段;本論文中主要強調口罩的減音三要素:共振結構、振動鈑、吸音棉等來做分析,利用不同的排列組合、測量方式來看我們所設計出來的減音口罩能否能達到預設的減音效果,我們密切與醫院保持聯繫以便隨時更新病患之需求,來協助我們能夠建立一個減音效果更好、口罩材質更輕量的口罩。本產品已由小兒科醫生與機械工程系教授共同研發出原型,並已經由少量測試、模擬來分析,發現可達預期之減音效果。摘要(英) Tourette syndrome is an inherited neurophysiologic disorder with onset in childhood, characterized by multiple physical (motor) tics and at least one vocal (phonic) tic. Between 0.4% and 3.8% of children ages 5 to 18 may have Tourette′s; the prevalence of other tic disorders in school-age children is higher, with the more common tics of eye blinking, coughing, throat clearing, sniffing, and facial movements. Coprolalia (the spontaneous utterance of socially objectionable or taboo words or phrases) is the most publicized symptom of Tourette′s, but only 19.3% of male and 14.6% of female Tourette′s patients exhibit it. People with Tourette Syndrome often feel immense anxiety about expressing their tics, particularly when they have vocal tics or coprolalia. This anxiety may make symptoms worse for some people, and frequently leads to social isolation.
If we can design a mask to reduce the intensity of vocal tic or coprolalia, the patients with Tourette syndrome will have a better life quality. The main emphasis in this study are three elements of sound-absorbing principle, the resonance structure, vibrator plate , sound-absorbing cotton. Through analysis, using different permutations and combinations, in order to seeking the efficiency of sound suppression by using design masks. Otherwise, a new novel multilayer vibrating plate design was successfully 3D printed in conjunction with the 3D scanned data for the customized face features. The field test results revealed an effective sound suppression can be fulfilled in the range of 60%~90% for the frequency range 100-2500Hz. Therefore, the second year project goal aims to continuously design and develop an alternative low-cost, vacuum structure for the patients of Tourette syndrome.關鍵字(中) ★ 妥瑞症聲語型
★ 吸音原理
★ 減音率關鍵字(英) ★ Tourette syndrome
★ Sound-absorbing principle
★ Noise reduction rate論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
符號說明 x
第一章、緒論 1
1.1 前言 1
1.2 研究目的 2
1.3內容架構 2
第二章、理論基礎與文獻回顧 3
2.1 聲波的能量、聲功率 3
2.1.1 聲波的能量 3
2.1.2 聲音功率 3
2.2 響度(Loudness)或稱聲強(Sound Intensity) 4
2.3 分貝(dB,decibel) 4
2.4 聲場中聲波傳遞方程式 5
2.5 A-weighting 6
2.6 聲壓抑制技術-吸音機制探討 8
2.7 聲壓抑制技術之用途 11
2.8 音場傳播原理與聲壓抑制機制分析 11
2.8.1 聲壓傳播原理與抑制 11
2.8.2採用奈米纖維聲壓傳播原理與抑制 12
2.8.3 聲壓量測架構與系統 15
第三章、實驗方法與步驟 16
3.1 實驗設備 16
3.2 實驗材料 24
3.3 實驗流程 27
3.4 建立量產型口罩、客製化口罩實體模型 28
3.4.1 量產型口罩1 29
3.4.2 量產型口罩2 31
3.4.3 客製化口罩 33
3.5 無響箱實驗 38
3.5.1 實驗設備與架設 38
3.6 人聲實測實驗 39
3.6.1 實驗設備與架設 39
第四章、實驗結果與討論 40
4.1 特定頻率區段中造成的各種模態振動方式 40
4.1.1 橢圓形振動鈑(Boundary Condition is circumferential) 41
4.1.2 橢圓形振動鈑(Boundary Condition is center) 44
4.1.3 長方形振動鈑(Boundary Condition is circumferential) 45
4.1.4 長方形振動鈑(Boundary Condition is center) 48
4.2 簡易無響箱測試實驗分析 50
4.3人聲實測實驗分析 56
4.3.1 量產型口罩1 (TPE) 57
4.3.2 量產型口罩1 (PLA) 59
4.3.3 量產型口罩2 61
4.3.4 客製化口罩 63
五、結論與未來展望 67
5.1 COMSOL 振動鈑模擬之結論 67
5.2 無響箱實驗之結論 67
5.3 人聲實測實驗之結論 67
5.4 未來展望 68
參考文獻 69參考文獻 [1]黃其柏,“工程聲學基礎”,華中科技大學,pp.33-35.
[2]白明憲,“工程聲學” ,全華圖書股份有限公司,2012年3月,pp.1-5-pp.1-12, pp.1-15-pp.1-16, pp.1-41-pp.1-43.
[3] http://www.diracdelta.co.uk/science/source/a/w/aweighting/source.html#.V163s7t97eR
[4] http://www.freudenberg-nw.com/en/solutions/Pages/SoundTex.aspx.
[5] Jayaraman, K. A., 2005, “Acoustical TPEorptive properties of Nonwovens,” North Carolina State University, M.S. thesis
[6] Kücük, M. and Korkmaz, Y., 2012, “The effect of physical parameters on sound TPEorption properties of natural fiber mixed nonwoven composites,” Textil. Res. J., 82, pp.2043-2053.
[7] Na, Y., Agnhage, T., and Cho, G., 2012, “Sound TPEorption of Multiple Layers of Nanofiber Webs and the Comparison of Measuring Methods for Sound TPEorption Coefficients,” Fiber. Polym., Vol. 13, No.13, pp.1348-1352
[8] Na, Y., Lancaster J., Casali, J., and Cho, G., 2007, “Sound TPEorption Coefficients of Micro-fiber Fabrics by Reverberation Room Method,” Textil. Res. J., 77, pp.330-335.
[9] Shoshani, Y. and Yakubov, Y., 1999, “A Model for Calculating the Noise TPEorption Capacity of Nonwoven Fiber Webs,” Textil. Res. J., 69, pp.519-526.
[10] Manning, J. and Panneton, R., 2013, “Acoustical model for Shoddy-based fiber sound TPEorbers,” Textil. Res. J., 83, pp.1356-1370.
[11] Du, Y., Yan, N. and Kortschot, M. T., 2014, “A simplified fabrication process for biofiber-reinforced polymer composites for automotive interior trim applications,” J. Mater. Sci., 49, pp. 2630-2639.
[12] Pegoretti, T. D. S., Mathieux, F., Evrard, D., Brissaud, D., and Arruda, J. R. D. F., 2014, “Use of recycled natural fibres in industrial products: A comparative LCA case study on acoustic components in the Brazilian automotive sector” Resour. Conserv. Recy., 84, 1. pp.1-14.
[13] Jiang, S., Xu, Y., Zhang, H., White, C. B. and Yan, X., 2012, “Seven-hole hollow polyester fibers as reinforcement in sound TPEorption chlorinated polyethylene composites” Appl. Acoust., 73, pp.243-247.
[14] Tadeu, A., António, J. and Mateus, D., 2004, “Sound insulation provided by single and double panel walls—a comparison of analytical solutions versus experimental results” Appl. Acoust., 65, pp.15-29.
[15] X. L. Zhang and C. P. Liu, Applied Mechanics and Materials, 275, 1623(2013).
[16] Lee, Y. E. and Joo, C. W., 2004,“Sound TPEorption Properties of Thermally Bonded Nonwovens Based on Composing Fibers and Production Parameters” J. Appl. Polym. Sci., Vol. 92, pp. 2295-2302.
[17] Yan, R., Wang, R., Lou, C.W. and Lin, J.H., 2014, “Manufacturing Technique and Acoustic Evaluation of Sandwich Laminates Reinforced High-resilience Inter/Intra-ply Hybrid Composites” Fiber. Polym. Vol.15, No.10, pp.2201-2210.
[18]白明憲,“工程聲學” ,全華圖書股份有限公司,2012年3月,pp.7-1-pp.7-18.
[19] http://myplastics.blogspot.tw/
[20] http://www.botfeeder.com.tw/指導教授 李雄(Shyong Lee) 審核日期 2016-7-6 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare