博碩士論文 103323069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:52.14.204.156
姓名 趙冠瑋(Guan-Wei Chao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 常用金屬材料在硝酸鈉與氯化鈉電解液中電化學加工特性之探討
(The Investigation of Electrochemical Machining Characteristics for Common Metallic Materials in NaNO3 and NaCl Electrolytes)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電化學加工是屬於非傳統加工的一種,利用低電壓、高電流使材料以離子狀態快速溶解,而達到加工目的的加工方法,其優點為設備成本低廉、刀具不易損壞、工件表面不含殘留應力等,且複雜的工件也能輕易地加工。在過去文獻當中,對於材料的電化學特性資訊較不足,因此本文旨在建立常用金屬材料的電化學特性資料庫,以供未來業界做參考。

本實驗分成三個部分:(一)利用恆電位儀量測電流-電壓曲線圖(I-V Curve),探討材料的電化學特性。(二)靜態電化學加工量測,利用電解液側向流場,通電5分鐘,紀錄電流、移除量並計算出電流密度。(三)加工後工件表面量測,包括工件表面結構狀況以及表面元素。並建立常用金屬電化學特性資料庫。探討的金屬工件包括不鏽鋼、模具鋼、高速鋼、構造用合金鋼、鈦合金、鎳合金、哈氏合金、磷青銅以及碳化鎢等等。本研究採用兩種中性的電解液硝酸鈉(NaNO3)與氯化鈉(NaCl)進行電化學加工。

由實驗結果顯示,在氯化鈉電解液中加工,電流密度比在硝酸鈉電解液中高,陽極工件移除量也較多,但是表面精度與粗糙度方面,利用氯化鈉電解液加工卻比較差。含鎢或銅的材料,因材料硬度較硬且表面易有鈍化層生,碳鋼類的材料在氯化鈉電解液中易有黑層(黑色鬆散的粒子層),皆會阻礙加工。鈦金屬材料在中性電解液中,加工品質均不佳,加工過程會有雜質稀出而造成金屬表面有許多孔洞。
摘要(英) Electrochemical machining (ECM) is one of the non-traditional manufacturing process which works on the low voltage and high current to dissolve materials rapidly in ion states. It has advantages such as inexpensive machining equipment, little or no tool wear, no residual stress on the work piece surface, and competence for machining complex geometries. In previous studies, it had not enough information about electrochemical characteristics of materials, so the aim of thesis is to establish the electrochemical characteristics for common metallic materials. It can be used as reference for industry in the future.

This article can be divided into three parts, namely, (1) Using autolab to measure current-voltage curves (I-V curves), and investigated electrochemical characteristics of materials. (2) Static electrochemical machining measurement: discharged for 5 minutes and recorded the current, material removal amounts and calculated the corresponding current density. The electrolyte flows into the machining area in the side direction. (3) After machining the work piece surface condition was measured, including surface structure and elements contained. The electrochemical characteristics and machining work database were established. Different kind of materials were performed, including stainless steels, pattern die steels, high speed steels, chromium molybdenum steels, titanium alloy, nickel alloy, Hastelloy alloy, phosphor bronze, and tungsten carbide alloy. They were manufactured in NaNO3 and NaCl electrolytes.

Experimental results show that, most of the materials in the NaCl electrolyte, the current density and material removal amount are larger than that in the NaNO3 electrolyte. However, the surface precision and roughness are poor in NaCl electrolyte. The materials contained copper or tungsten are high hardness and the passivation layer will be formed on the surface. The black film, also formed on the surface in NaCl electrolyte and materials contained carbon steels, will cause machining difficult. The materials contained titanium have poor machining quality in the neutral electrolytes, where the particles will be dissolved during the machining process and result in pitting phenomenon on the work piece surface.
關鍵字(中) ★ 電化學加工
★ 電化學特性
★ 電流密度
★ 移除量
關鍵字(英) ★ Electrochemical machining
★ Electrochemical characteristic
★ Current density
★ Material removal amounts
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 XI
表目錄 XVI
符號說明 XVII
第一章 緒論 1
1-1前言 1
1-2電化學加工 3
1-3文獻回顧 4
1-3-1電化學加工 5
1-3-2常用金屬材料之電化學加工 8
1-4研究背景與目的 12
第二章 基礎理論 14
2-1電化學加工基本理論 14
2-1-1電流密度(Current Density) 16
2-1-2電流效率(Current Efficiency) 16
2-1-3歐姆定律(Ohm’s Law) 17
2-1-4極化(Polarization) 17
2-2電解液導電度 20
2-2-1電解液 20
2-2-2電解液導電度(Conductivity) 20
2-2-3導電度與濃度之關係 21
2-3線性掃描伏安法 22
2-4電化學拋光 22
第三章 實驗設備與步驟 25
3-1實驗設備 25
3-1-1恆電位儀 25
3-1-2直流電源供應器 26
3-1-3導電度量測儀 26
3-1-4秤重計 27
3-1-5幫浦 27
3-1-6磁石攪拌器 27
3-1-7低真空掃描式電子顯微鏡 28
3-1-8能量散射光譜儀 28
3-1-9金相顯微鏡 29
3-1-10 X光粉末繞射儀(X-Ray Diffraction, XRD) 29
3-2實驗材料 30
3-2-1電解槽 30
3-2-2電極材料 30
3-2-3電解液 32
3-3實驗步驟與方法 32
3-3-1材料電化學特性 33
3-3-2靜態電化學加工 34
3-3-3工件表面狀況量測 35
3-4實驗注意事項 35
第四章 實驗結果與討論 37
4-1 Inconel718加工特性 39
4-2鈦金屬加工特性 41
4-3銅鎢合金加工特性 43
4-4磷青銅加工特性 45
4-5不鏽鋼加工特性 46
4-6哈氏合金(C276)加工特性 49
4-7碳化鎢加工特性 50
4-8模具鋼加工特性 52
4-9構造用合金鋼加工特性 54
4-10高速鋼加工特性 55
第五章 結論與未來展望 57
5-1結論 57
5-2未來展望 59
參考文獻 60
附圖 66
附表 129
參考文獻 [1] 徐泰然、朱銘祥,微機電系統與微系統:設計與製造,麥格羅希爾出版,台北市,2003.
[2] S. H. Ahn, S. H. Ryu, D. K. Choi and C. N. Chua, “Electro-chemical Micro Drilling Using Ultra Short Pulses,” Precision Engineering, Vol. 28, pp. 129-34, (2004).
[3] D. Zhu and H. Y. Xu, “Improvement of electrochemical machining accuracy by using dual pole tool,” Journal of Materials Processing Technology, Vol. 129, pp. 15-18, (2002).
[4] H. Hocheng, Y. H. Sun, S. C. Lin and P. S. Kao, “A material removal analysis of electrochemical machining using flat-end cathode,” Journal of Material Processing Technology, Vol. 140, pp. 264-268, (2003).
[5] A. N. Zaytsev, V. P. Zhitnikov and T. V. Kosarev, “Formation mechanism and elimination of the workpiece surface macro-defects, aligned along the electrolyte stream at electrochemical machining,” Journal of Materials Processing Technology, Vol. 149, pp. 439-444, (2004).
[6] S. K. Mukherjee, S. Kumar, P. K. Strivastava, “Intervening variables in electrochemical machining,” Tamkang Journal of Science and Engineering, Vol. 8, pp. 23-28, (2005)
[7] J. C. N. d. Sliva, E. M. d. Silva and M. B. d. Silva, “Intervening variables in electrochemical machining,” Journal of Materials Processing Technology, Vol. 179, pp. 92-96, (2006).
[8] J. Xu, N. Yun, Y. Tang and K. P. Rajurkar, “The modeling of NC-electrochemical contour machining using a rotary tool-cathode,” Journal of Materials Processing Technology, Vol. 159, pp. 272-277, (2005).
[9] T. Kurita and M. Hattori, “A study of EDM and ECM/ECM-lapping complex machining technology,” International Journal of Machine Tool and Manufacture, Vol. 46, pp. 1804-1810, (2006).
[10] T. Kurita, C. Endo, Y. Matsui, H. Masuda, K. Terasawa, F. Tanaka, H. Ikeda, K. Oguchi and K. Kobayashi, “Mechanical/electrochemical complex machining method for efficient, accurate and environmentally benign process,” International Journal of Machine Tool and Manufacture, Vol. 48, pp. 1599-1604, (2008).
[11] J. C. Fang, Z. J. Jin, W. J. Xu and Y. Y. Shi, “Magnetic electrochemical finishing machining,” Journal of Materials Processing Technology, Vol. 129, pp. 283-287, (2002).
[12] Z. Fan, T. Wan and L. Zhong, “The mechanism of improving machining accuracy of ECM by magnetic field,” Journal of Materials Processing Technology, Vol. 149, pp. 409-413, (2004).
[13] H. Bao, J. Xu and Y. Li, “Aviation-oriented micromachining technology-micro-ECM in Pure Water,” Chinese Journal of Aeronautics, Vol. 21, pp. 455-461, (2008).
[14] X. Chen, Z. Xu, D. Zhu, Z. Fang and D. Zhu, “Experimental research on electrochemical machining of titanium alloy Ti60 for a blisk,” Chinese Journal of Aeronautics, Vol. 29(1), pp. 274-282, (2016).
[15] X. Chen, N. Qu, H. Li, Z. Guo, “Removal of islands from micro-dimple arrays prepared by through-mask electrochemical micromachining,” Precision Engineering, Vol. 39, pp. 204-211, (2015).
[16] G. Q. Wang, H. S. Li, N. S. Qu, D. Zhu, “Investigation of the hole-formation process during double-sided through-mask electrochemical machining,” Journal of Material Processing Thchnology, Vol. 234, pp. 95-101, (2016).
[17] X. Chen, N. Qu, X. Fang, D. Zhu, “Reduction of undercutting in electrochemical micro-machining of micro-dimple arrays by utilizing oxygen produced at the anode,” Surface & Coatings Technology, Vol. 277, pp. 44-54, (2015).
[18] M. C. Jeng, J. L. Doong and C. W. Yang, “The effect of carbon content and microstructure on the metal removal rate in electrochemical machining,” Journal of Materials Processing Technology, Vol. 38 pp. 527-538, (1993).
[19] 徐永通、邹君泰、陆友慈,不鏽鋼板的電化學機械複合加工,廣東工學院報,Vol. 10,No. 4,12月,1993.
[20] 御子柴佑恭,鈴木靖夫,上野興三,水原康,超硬合金の電解加工法,日立評論, Vol. 49(3), pp. 319-324, (1967).
[21] E. Suganuma, “Electrochemical Behavior of Cement Carbide II”, Bull of Yamagata Univ. Eng., Vol. 11(2), pp. 197-204, (1971).
[22] 菅沼栄一,超硬合金の電解加工に関する基礎的研究(第1報),精密機械,Vol. 44(4),pp. 502-507,(1978).
[23] 菅沼栄一,超硬合金の電解加工に関する基礎的研究(第2報),精密機械,Vol. 44(8),pp. 926-931,(1978).
[24] 菅沼栄一,超硬合金の電解加工に関する基礎的研究(第3報),精密機械,Vol. 44(11),pp. 1373-1379,(1978).
[25] 菅沼栄一,超硬合金の電解加工における電解生成物の生成過程と陰極電解による除去作用,電気加工学会誌,Vol. 13(26),pp. 3-20,(1980).
[26] S. Hochstrasser, Y. Mueller, C. Latkoczy, S Virtanen and P. Schmutz, “Analytical characterization of the corrosion mechanisms of WC–Co by electrochemical methods and inductively coupled plasma mass spectroscopy,” Corrosion Science, Vol. 49(4), pp. 2002-2020, (2007).
[27] M. Hackert-Oschätzchen, A. Martin, G. Meichsner, M. Zinecker and A. Schubert, “Microstructuring of carbide metals applying jet electrochemical machining,” Precision Engineering, Vol. 37(3), pp. 621-634, (2013).
[28] N. Schubert, M. Schneider and A. Michealis, “The mechanism of anodic dissolution of cobalt in neutral and alkaline electrolyte at high current density,” Electrochemical Acta, Vol. 113, pp. 748-754, (2013).
[29] N. Schubert, M. Schneider and A. Michaelis, “Electrochemical machining of cemented carbides,” International Journal of Refractory Metals and Hard Materials, Vol. 47, pp. 54-60, (2014).
[30] 田福助,電化學-理論與應用,高立圖書,新北市,2011.
[31] J. A. McGeough, Principles of electrochemical machining, Chapman Hall, London, pp. 9, (1974).
[32] 胡啟章,電化學原理與方法,五南圖書,台北市,12-13頁,2002.
[33] J. F. Thorpe and R. D. Zerkle, “Theoretical analysis of the equilibrium sinking of shallow, axially symmetric, cavities by electrochemical machining,” Fundamentals of Electrochemical Machining, Electrochemical Society, pp. 1-39, (1971).
[34] P. Allongue, P. Jiang, V. Kirchner, A. L. Trimmer, and R. Schuster, “Electrochemical micromachining of p-type silicon,” Journal of Physical Chemistry B, Vol. 108, pp. 14434-14439, (2004).
[35] 陳裕豐,高潔淨閥件之流道表面處理-電解拋光(EP)技術,機械工業雜誌,198期,230-240頁,9月,1999.
[36] 范智文,利用電化學加工製作微電極和微孔之研究與分析(國立中央大學機械工程研究所博士論文),119頁,5月,2010.
[37] M. S. Nikolova, A.Natarajan and P. C.Searson, “Electrochemical fabrication of sharp nickel tips in H2SO4 solution,” Journal of the Electrochemical Society, Vol. 144(2), pp. 455-460, (1997).
[38] 佐藤敏一,電解加工與化學加工,復文書局,53頁,2月,1987.
[39] 朱樹敏,電化學加工技術,化學工業出版社,39-49頁,7月,2006.
[40] I. Basak and A. Ghosh, “Mechanism of material removal in electrochemical discharge machining: a theoretical model and experimental verification,” Journal of Materials Processing Technology, Vol. 71(3), pp. 350-359, (1997).
[41] B. Bhattacharyya , M. Malapati, and J. Munda, “Experimental study on electrochemical micromachining,” Journal of Materials Processing Technology, Vol. 169, pp. 485-492, (2005).
[42] T. Haisch, E. Mittemeijer, and J. W. Schultze, “Electrochemical machining of the steel 100Cr6 in aqueous NaCl and NaNO3 solutions: microstructure of surface films formed by carbides,” Electrochimica Acta, Vol. 47, pp. 235-241, (2001).
[43] 楊志文,碳鋼與鑄鐵之電化學加工特性研究(國立中央大學機械工程研究所碩士論文),21頁,6月,1990.
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2016-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明