博碩士論文 995403001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.22.181.148
姓名 朱衍印(Yen-Yin Chu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 無線寬頻網路節能排程與資源分配之研究
(Energy saving scheduling and resource allocation for broadband wireless access networks)
相關論文
★ 應用MSPP至DWDM都會光纖網路的設計★ 光網路與WiMAX整合架構研究及其簡化雛型實驗
★ 以Linux系統為基礎之NAT效能優化研究及其實作★ 光波長劃分多工網路之路徑保護機制研究
★ 標籤交換網路下具有服務品質路由安排之研究★ 以訊務相關性為基礎的整合性服務可調整QoS排程器之研究
★ 以群體播送支援IPv6環境下移動式網路連結更新之研究★ 無線區域網路資源動態分配之效能研究
★ 在微觀移動環境下有效資源保留之路徑管理研究★ 無線網路交握程序之預先認證方法分析與比較
★ 無線區域網路虛擬允入控制之研究★ IPv6環境下移動網路之連結更新程序及其效能之研究
★ 具有限數量波長轉換節點的分波多工網路之群播波長分配與容量計算研究★ 階層化行動式IPv6移動錨點選擇機制研究
★ 具高能量移動節點之叢集式感測網路 效能研究★ 預先註冊之快速換手階層化行動式IPv6研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於高解析度媒體的快速發展刺激了對無線寬頻網路的需求以及對於網路連線品質的要求。然而,第四代的無線寬頻網路WiMax (Worldwide Interoperability for Microwave Access) 和 LTE/LTE-A (Long-Term Evolution /Long-Term Evolution-Advanced) 的技術提供了更高速的數據傳輸以及更大容量的無線接取網路,由於各種行動裝置應用使得用戶通過手持設備訪問相關聯的服務,因此節能已成為行動設備中最關鍵的問題之一,尤其是在實際應用中增加其操作時間。
雖然WiMax和LTE / LTE-A網絡提供各種睡眠模式類型和參數以實現節能,但是當BS (Base Station)或eNodeB (evolved Node B)分配無線電資源時,可以通過考慮更多的影響因素來改進睡眠模式的效率,而且不管在最佳化能源的利用率或是滿足QoS (Quality of Service)的需求,在各種無線寬頻網路仍然需要新穎的無線電資源分配管理方法。為了達到上述的目標,本論文提出ESC-US (Energy-Saving Centric Uplink Scheduling) 的方法在WiMax上行鏈路中使用以及 SDRRS (State Dependent Radio Resource Scheduling)的方法在LTE下行鏈路中使用。在ESC-US的方法中提出了rtPS (real-time Polling Services)和nrtPS (non-real-time Polling Services)兩種分配頻寬的演算法,此研究提出了讓用戶先進入睡眠模式在能滿足QoS的要求下再醒來傳輸資料,用來達到節能的目的。在模擬的結果中此方法比起傳統的方式能夠滿足用戶的QoS要求下並且達到更好的節能效果。在SDDRS的方法中加入了burst-scheduling 的觀念去傳輸資料,並且在醒來和休眠的狀態中去調整inactivity timer的值,從模擬的結果來看節能的效能也是優於其他的方法。
在LTE-A網絡中,具有LTE-A能力的UE (User Equipment)可以聚合多個CC (Component Carriers)以用於使用更多的頻寬。但是具有LTE-A能力的UE可以被分配到在不同CC上的RBs (Resource Block),LTE能力的UE只可以在同一個CC上被分配到RB。為了解決此問題,本論文提出了一個使用Gale-Sharply 的方法用來分配CC的方式,讓不論是LTE的UE或是LTE-A的UE可以在LTE-A的網路環境分配上行鏈路的排程方法。
關於機器與機器之間通訊的其他研究,其研究上行鏈路調度方案以最小化信令開銷並且最大化LTE網絡中的系統吞吐量為目的,在機器與機器通訊中的關鍵問題是減少大量連接的設備和eNodeB之間的信令開銷,本論文提出方案動態地調整群組成員,不僅考慮QoS和通道條件,而且應用分配請求概念來分配剩餘頻寬。
摘要(英) The rapid development of high-definition media has stimulated demand for wireless broadband networks and connection-oriented quality for several network services. However, the fourth-generation standard, WiMax (Worldwide Interoperability for Microwave Access) and LTE/LTE-A (Long-Term Evolution /Long-Term Evolution-Advanced) technologies, provide a higher-speed data rate and larger-capacity wireless access networks. Because various mobile applications induce users to access the associated services through handheld devices, energy saving has become one of the most critical concerns in mobile devices, especially for increasing their operation time in practical applications.
WiMax and LTE/LTE-A networks provide various sleep mode types and parameters to achieve power-saving, it can be improved by considering more influence factors when BS (Base Station) or eNodeB (evolved Node B) allocated radio resource. However, new radio resource scheduling is still needed to consider either optimal energy utilization or QoS (Quality of Service) satisfaction for both broadband access networks. To achieve this objective, we propose an ESC-US (Energy-Saving Centric Uplink Scheduling) scheme for uplink traffic in WiMax and SDRRS (State Dependent Radio Resource Scheduling) scheme for downlink traffic in LTE. The ESC-US scheme provides rtPS (real-time Polling Services) and nrtPS (non-real-time Polling Services) scheduling algorithms that apply the “just enough QoS” and “sleep before transmission” concepts to achieve energy-saving centric objective. The simulation results demonstrate that both schemes satisfy the desired QoS and achieve better energy consumption compared to the conventional scheme. The SDRRS scheme involves the burst-scheduling concept with respect to transitions between the active and the sleep states to adjust the inactivity timer. The performance was investigated via exhaustive simulations indicated that the SDRRS scheme can reduce energy consumption more effectively compared with the other schemes.
In LTE-A network, the UE (User Equipment) with LTE-A capability could aggregate more than one CC (Component Carriers) for more channel bandwidth. However, the LTE-A UE can be allocated RBs (Resource Block) in different CCs, but LTE UE can only be allocated RBs in the same CC. To address this issue, we propose a novel scheme that considers the localized subcarrier by properly using the Gale-Sharply concept to schedule the uplink traffic of both LTE and LTE-A UE in LTE-A network environment.
Additional research is presented on machine-to-machine communication, which studies an uplink scheduling scheme to minimize signaling overhead and maximize system throughput in LTE network. A crucial problem in the machine-to-machine communication is to reduce signaling overheads between a large number of connected devices and eNodeB. We propose scheme dynamically adjusts group members that considers not only QoS and channel condition but also applies the allocation-before-request concept to allocate the residual bandwidth.
關鍵字(中) ★ 全球互通微波存取
★ 長期演進技術
★ 排程
★ 機器類型通訊
關鍵字(英) ★ WiMax
★ LTE/LTE-A
★ Scheduling
★ Machine Type Communication
論文目次 中文摘要 I
Abstract III
Acknowledgments V
Table of Contents VI
List of Figures VIII
List of Tables X
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Contributions 3
1.3 Overview of Dissertation 5
Chapter 2 Overview of Energy Consumption Scheduling and Related Works 6
2.1 Power-Saving Scheduling 6
2.2 DRX Mode Scheduling 8
2.3 Heuristic Uplink Scheduling 10
2.4 Group-Based Scheduling 12
2.5 System Architecture 14
Chapter 3 Energy-saving centric uplink scheduling scheme 16
3.1 System model 17
3.2 The proposed ESC-US scheme 18
3.2.1. The method of rtPS connection 24
3.2.2. The method of nrtPS connection 25
3.2.3. The procedure of the rtPS and nrtPS scheduling 27
3.3 Performance Simulation 31
3.3.1. Fixed Number of nrtPS MS 33
3.3.2. Effect of rtPS on/off ratio 36
3.3.3. Sleep Threshold Effect for MS 37
3.4 Summary 40
Chapter 4 State Dependent Radio Resource Scheduling 41
4.1 UE power consumption model 41
4.2 Proposed State Dependent Radio Resource Scheduling 42
4.3 Performance Simulations 51
4.4 Summary 57
Chapter 5 A Heuristic Design for the Uplink Scheduling 59
5.1 System model 59
5.2 The Proposed scheme 60
5.3 Performance Simulations 65
5.4 Summary 70
Chapter 6 Dynamic Group-based Scheduling of M2M Communication 71
6.1 System Architecture 71
6.2 The Proposed Scheme 72
6.2.1. Dynamic Grouping MTCD 74
6.2.2. Allocates Radio Resources to Groups 76
6.3 Performance Simulations 81
6.4 Summary 85
Chapter 7 Conclusion and Future Work 86
Bibliography 89
List of Publications 96

參考文獻 [1] IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE Std 802.16e-2005 and IEEE Std 802.16-2004 / Cor 1-2005, 2006.
[2] 3GPP TS 36.321 V1. 0.0 Access, Evolved Universal Terrestrial Radio. "Medium Access Control (MAC) protocol specification (Release 8), " 2008.
[3] K. Lahiri, A. Raghunathan, S. Dey and D. Panigrahi, "Battery-driven system design: a new frontier in low power design," in Proc. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design, pp. 261-267, 2002.
[4] G. Miao, N. Himayat, G. Y. Li, and A. Swami, "Cross-layer optimization for energy-efficient wireless communications: A survey," Wireless Communications and Mobile Computing, vol. 9, no. 4, pp. 529–542, Apr. 2009.
[5] G. Miao, N. Himayat, G. Y. Li, and S. Talwar, "Low-complexity energy-efficient scheduling for Uplink OFDMA," IEEE Transactions on Communications, vol. 60, no. 1, pp. 112–120, Jan. 2012.
[6] C. Han et al., "Green radio: Radio techniques to enable energy-efficient wireless networks," IEEE Communications Magazine, vol. 49, no. 6, pp. 46–54, Jun. 2011.
[7] 3GPP TS 36.300 V10.3.0, Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); overall description; Stage 2, 2012.
[8] M. Iwamura, K. Etemad, M.H. Fong, R. Nory, R. Love, "Carrier Aggregation Framework in 3GPP LTE-advanced, " IEEE Communications Magazine, vol. 48, issue 8, pp. 60-67, August 2010.
[9] "Machine-to-machine (M2M), The rise of the machines, " Juniper Networks White Paper, 2011.
[10] T. Taleb and A. Kunz, "Machine type communications in 3GPP networks: Potential, challenges, and solutions," IEEE Communications Magazine, vol. 50, no. 3, pp. 178–184, Mar. 2012.
[11] 3GPP TR 23.888. V2.0.0, System improvements for Machine-Type Communications (MTC), Sept 2012.
[12] Y.-W. Chen, Y.-Y. Chu, and I.-H. Peng, "Energy-saving centric uplink scheduling scheme for broadband wireless access networks," EURASIP Journal on Wireless Communications and Networking, vol. 2014, no. 1, p. 70, 2014.
[13] Y.-W. Chen, Y.-Y. Chu, P.-Y. Hsu, J.-H. Tsai, and P.-Y. Liao, "A Heuristic Design for Uplink Scheduling in LTE-A Networks," Journal of Internet Technology, vol. 17, no. 4, pp. 711–717, Jul. 2016.
[14] Y. Xiao, "Energy saving mechanism in the IEEE 802.16e wireless MAN," IEEE Communications Letters, vol. 9, no. 7, pp. 595–597, Jul. 2005.
[15] Y. Zhang and M. Fujise, "Energy management in the IEEE 802.16e MAC," IEEE Communications Letters, vol. 10, no. 4, pp. 311–313, Apr. 2006.
[16] J. Seo, S. Lee, N. Park, H. Lee, and C. Cho, “Performance analysis of sleep mode operation in IEEE 802.16e,” in Proc. IEEE Vehicular Technology Conference (VTC), pp. 1169–1173, Sep. 2004.
[17] K. Han and S. Choi, "Performance Analysis of Sleep Mode Operation in IEEE 802.16e Mobile Broadband Wireless Access Systems," in Proc. IEEE Vehicular Technology Conference (VTC), pp. 1141-1145, 2006.
[18] J. Lee and D. Cho, "An optimal power-saving class II for VoIP traffic and its performance evaluations in IEEE 802.16e," Computer Communications, vol. 31, no. 14, pp. 3204–3208, Sep. 2008.
[19] T.-C. Chen, J.-C. Chen, and Y.-Y. Chen, "Maximizing unavailability interval for energy saving in IEEE 802.16e wireless MANs," IEEE Transactions on Mobile Computing, vol. 8, no. 4, pp. 475–487, Apr. 2009.
[20] L. Kong and D. H. k. Tsang, "Performance Study of Power Saving Classes of Type I and II in IEEE 802.16e," in Proc. IEEE Conference on Local Computer Networks (LCN), pp. 20-27, 2006.
[21] Y. Xiao, "Energy saving mechanism in the IEEE 802.16e wireless MAN," IEEE Communications Letters, vol. 9, no. 7, pp. 595–597, Jul. 2005.
[22] J. Shi, G. Fang, Y. Sun, J. Zhou, Z. Li and E. Dutkiewicz, "WLC17-5: Improving Mobile Station Energy Efficiency in IEEE 802.16e WMAN by Burst Scheduling," in Proc. IEEE Globecom, pp. 1-5, 2006.
[23] S.-C. Huang, R.-H. Jan, and C. Chen, "Energy Efficient Scheduling with QoS Guarantee for IEEE 802.16e Broadband Wireless Access Networks, " in Proc. Int’l Conf. Wireless Comm. and Mobile Computing, pp. 547-552, Aug. 2007.
[24] S.-L. Tsao and Y.-L. Chen, "Energy-efficient packet scheduling algorithms for real-time communications in a mobile WiMAX system," Computer Communications, vol. 31, no. 10, pp. 2350–2359, Jun. 2008.
[25] S.-R. Yang and C.-C. Kao, "An energy-efficient scheduling algorithm for IEEE 802.16 e broadband wireless access systems," in Proc. International Conference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly, pp.532-536, 2009.
[26] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, "Downlink packet scheduling in LTE cellular networks: Key design issues and a survey," IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 678–700, 2013.
[27] C. Bontu and E. Illidge, "DRX mechanism for power saving in LTE," IEEE Communications Magazine, vol. 47, no. 6, pp. 48–55, Jun. 2009.
[28] H. Bo, T. Hui, C. Lan, and Z. Jianchi, "DRX-Aware scheduling method for delay-sensitive traffic," IEEE Communications Letters, vol. 14, no. 12, pp. 1113–1115, Dec. 2010.
[29] Y. Y. Mihov, K. M. Kassev and B. P. Tsankov, "Analysis and performance evaluation of the DRX mechanism for power saving in LTE," in Proc. IEEE 26-th Convention of Electrical and Electronics Engineers in Israel, pp. 520–524, 2010.
[30] S. Jin and D. Qiao, "Numerical analysis of the power saving in 3GPP LTE advanced wireless networks," IEEE Transactions on Vehicular Technology, vol. 61, no. 4, pp. 1779–1785, May 2012.
[31] G. Berardinelli, T. Sorensen, P. Mogensen, and K. Pajukoski, "Transmission over multiple component carriers in LTE-A uplink," IEEE Wireless Communications, vol. 18, no. 4, pp. 67–73, Aug. 2011.
[32] Y. Wang, K. Pedersen, T. Sorensen, and P. Mogensen, "Carrier load balancing and packet scheduling for multi-carrier systems," IEEE Transactions on Wireless Communications, vol. 9, no. 5, pp. 1780–1789, May 2010.
[33] H. Tian, S. Gao, J. Zhu and L. Chen, "Improved Component Carrier Selection Method for Non-Continuous Carrier Aggregation in LTE-Advanced Systems," in Proc. IEEE Vehicular Technology Conference (VTC), pp. 1-5, 2011.
[34] L. Zhang, K. Zheng, W. Wang, and L. Huang, "Performance analysis on carrier scheduling schemes in the long-term evolution-advanced system with carrier aggregation," IET Communications, vol. 5, no. 5, pp. 612–619, Mar. 2011.
[35] L. A. M. Ruiz de Temino, G. Berardinelli, S. Frattasi and P. Mogensen, "Channel-aware scheduling algorithms for SC-FDMA in LTE uplink," in Proc. IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 1-6, 2008.
[36] Y. W. Chen and S. C. Ke, "A uplink radio resource allocation scheme for localized SC-FDMA transmission in LTE network," The Journal of Supercomputing, vol. 66, no. 2, pp. 670–685, Jan. 2013.
[37] K. Zheng, F. Hu, W. Wang, W. Xiang, and M. Dohler, "Radio resource allocation in LTE-advanced cellular networks with M2M communications," IEEE Communications Magazine, vol. 50, no. 7, pp. 184–192, Jul. 2012.
[38] K.-C. Chen and S.-Y. Lien, "Machine-to-machine communications: Technologies and challenges," Ad Hoc Networks, vol. 18, pp. 3–23, Jul. 2014.
[39] P. Jain, P. Hedman, and H. Zisimopoulos, "Machine type communications in 3GPP systems," IEEE Communications Magazine, vol. 50, no. 11, pp. 28–35, Nov. 2012.
[40] M.-Y. Cheng, G.-Y. Lin, H.-Y. Wei, and A. Hsu, "Overload control for machine-type-communications in LTE-Advanced system," IEEE Communications Magazine, vol. 50, no. 6, pp. 38–45, Jun. 2012.
[41] S. Andreev et al., "Efficient small data access for machine-type communications in LTE," in Proc. IEEE International Conference on Communications (ICC), pp. 3569-3574, 2013.
[42] K.-R. Jung, A. Park, and S. Lee, "Machine-type-communication (MTC) device grouping algorithm for congestion avoidance of MTC oriented LTE network," Communications in Computer and Information Science, pp. 167–178, 2010.
[43] J. Jermyn, R. P. Jover, I. Murynets, M. Istomin and S. Stolfo, "Scalability of Machine to Machine systems and the Internet of Things on LTE mobile networks," in Proc. IEEE 16th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1-9, 2015.
[44] Y.-W. Chen, M.-H. Lin, C.-Y. Yang, and Y.-C. Liang, "Analysis and measurement of signaling in 3G environment for social networking services," Wireless Personal Communications, vol. 84, no. 2, pp. 867–883, May 2015.
[45] A. Rajandekar and B. Sikdar, "A survey of MAC layer issues and protocols for machine-to-machine communications," IEEE Internet of Things Journal, vol. 2, no. 2, pp. 175–186, Apr. 2015.
[46] A. G. Gotsis, A. S. Lioumpas, and A. Alexiou, "M2M scheduling over LTE: Challenges and new perspectives," IEEE Vehicular Technology Magazine, vol. 7, no. 3, pp. 34–39, Sep. 2012.
[47] A. S. Lioumpas and A. Alexiou, "Uplink scheduling for Machine-to-Machine communications in LTE-based cellular systems," in Proc. IEEE GLOBECOM Workshops (GC Wkshps), pp. 353-357, 2011.
[48] A. M. Maia, D. Vieira, M. F. de Castro and Y. Ghamri-Doudane, "A mechanism for uplink packet scheduler in LTE network in the context of machine-to-machine communication," in Proc. IEEE GLOBECOM, pp. 2776-2782, 2014.
[49] J. Brown and J. Y. Khan, "Predictive resource allocation in the LTE uplink for event based M2M applications," in Proc. IEEE International Conference on Communications Workshops (ICC), pp. 95-100, 2013.
[50] P. Si, J. Yang, S. Chen, and H. Xi, "Adaptive massive access management for QoS guarantees in M2M communications," IEEE Transactions on Vehicular Technology, pp. 1–1, 2014.
[51] S.-Y. Lien, K.-C. Chen, and Y. Lin, "Toward ubiquitous massive accesses in 3GPP machine-to-machine communications," IEEE Communications Magazine, vol. 49, no. 4, pp. 66–74, Apr. 2011.
[52] S.-C. Ke, Y.-W. Chen, and H.-A. Fang, "An energy-saving-centric downlink scheduling scheme for WiMAX networks," International Journal of Communication Systems, pp. 2518–2535, Dec. 2012.
[53] Jain, Raj, "WiMAX system evaluation methodology v2. 1, " WiMAX Forum, 2008.
[54] D. Feng, C. Jiang, G. Lim, L. J. Cimini, G. Feng and G. Y. Li, "A survey of energy-efficient wireless communications," in Proc. IEEE Communications Surveys & Tutorials, vol. 15, no. 1, pp. 167-178, 2013.
[55] 3GPP TSG-RAN WG2 Meeting #57bis, R2-071285,St. Julian’s, Malta, Agenda item:5.2.3, Source: Nokia , Title: DRX parameters in LTE
[56] J. Wigard, T. Kolding, L. Dalsgaard and C. Coletti, "On the User Performance of LTE UE Power Savings Schemes with Discontinuous Reception in LTE," in Proc. IEEE International Conference on Communications Workshops, pp. 1-5, 2009.
[57] 3GPP TR 25.892 V6.0.0, Technical Specification Group Radio Access Network, Feasibility Study for Orthogonal Frequency Division Multiplexing (OFDM) for UTRAN enhancement.
[58] Zhao Qiyong, " Future smartphone solution White Paper, " pp. 5-15, 2012.
[59] 3GPP TR 36.888 V12.0.0, "Study on provision of low-cost Machine-Type Communications (MTC) User Equipments (UEs) based on LTE, " June 2013.?
指導教授 陳彥文(Yen-Wen Chen) 審核日期 2017-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明