博碩士論文 102521011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.138.119.142
姓名 李政修(Jheng-Siou Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 在頻譜異構之隨意式感知無線電網路下利用空域-頻域-時域特性之多頻段能量偵測演算法
(Exploiting Spatial-Spectral-Temporal Properties for Heterogeneous Spectrum Sensing in Cognitive Radio Ad-Hoc Networks)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出應用於頻譜異構之隨意式感知無線電網路下的多頻段能量偵測演算法,此演算法利用通道在空域、頻域與時域上的特性,來改善頻譜偵測效能。感知無線電下的次要使用者並無授權頻段的使用權,若其欲使用頻譜資源,必須在事前對頻譜進行週期性的偵測以確認頻譜空洞的存在,當發現頻譜空洞時,還須在不干擾主要使用者的前提之下,以機會性方式對頻譜資源進行存取。從次要使用者對頻譜進行使用的過程中可發現,頻譜偵測是感知無線電中最為重要的課題,其相關研究也將在本篇論文中繼續被探討。異構頻譜環境下不同的次要使用者會感受到相異的頻譜使用狀況,但部分次要使用者會因地理環境的緣故,而感受到相似的頻譜使用情形,這類有相似頻譜使用情況的環境又稱之為同構頻譜環境。為了使同構頻譜環境下的次要使用者們能彼此合作,利用插入權重定位演算法對主要使用者傳送端做定位,並根據次要使用者與主要使用者傳送端之間的距離來判斷次要使用者是否位在主要使用者傳送端的傳輸範圍內,進而推斷出次要使用者之間是異構還是同構的關係。同構頻譜環境的次要使用者們隨著所處的環境不同,將遭受不同程度的衰減。為了有效提高對頻譜的偵測能力,次要使用者們利用空間與時間上的多樣性,並透過馬可夫鏈的能量遞迴運算方式,使次要使用者與鄰居之間進行資訊交換,以提高資訊可信度;為了善用頻段之間的相關性,建議所有的次要使用者對頻譜進行寬頻頻譜偵測,SNR-based weighted wideband spectrum sensing便是利用頻段之間在使用上的關聯性對寬頻頻段偵測結果做權衡,以提升偵測精準度。
在硬體設計中,插入權重定位演算法與能量遞迴運算需要經過多次遞迴計算,將造成硬體成本的增加,但若採用以時間換取空間的方式,將資料回傳再運算,則可大大節省硬體面積。適當地插入管線不僅有助於排程,更能提高運算吞吐量。最終的硬體設計將以FPGA型號:Spartan6 XC6SLX150來做驗證,複雜的硬體僅使用9顆CORDIC除法器與8顆CORDIC絕對值器,綜觀而言,實屬一低複雜度的硬體設計。
摘要(英) In this paper, we propose an algorithm for heterogeneous spectrum sensing in cognitive radio ad-hoc network. This algorithm utilizes the spatial domain, frequency domain and time domain characteristics of the primary user occupancy to improve the spectrum sensing performance. In the heterogeneous spectrum environment, different secondary users may experience similar or dissimilar spectrum usage due to the geographical location. In the transmission range of the primary user, a similar spectrum occupancy appears. It is called the homogeneous spectrum environment. The weighted interpolation positioning algorithm (WIP) is used to locate the position of the primary transmitter and thus those secondary users can cooperate with each other when they are identified as nodes in the homogeneous environments. Given the assumption of the fixed transmitter of the primary user, tracking mechanism is used to enhance the accuracy of localization. On the other hand, the energy recursion algorithm based on Markov-chain to exchange information among neighboring secondary users can generate converged energy detection result after several iterations. In addition, wideband spectrum sensing is also adopted. Secondary users utilize the correlation of spectrum occupancy to detect the activity of the wide-band spectrum with SNR-based weighted wideband spectrum sensing technique. Thus, the network level detection performance can be improved with these algorithms that exploit the spatial, spectral, temporal properties to detection spectrum holes for opportunistic spectrum accesses of the secondary users.
For the hardware design, the weighted interpolation positioning algorithm(WIP) and the energy recursive operation is calculated iteratively. With the time-sharing technique, the hardware complexity can be reduced. Only 9 CORDIC dividers and 8 CORDIC absoluters exist in the 8 parallel-processing wide-band spectrum sensing modules. Finally, the design is verified by FPGA, Spartan6
XC6SLX150.
關鍵字(中) ★ 感知無線電
★ 頻譜異構環境
★ 能量偵測
關鍵字(英) ★ Cognitive radio
★ Heterogeneous spectrum environment
★ Energy detection
論文目次 第一章 緒論 1
1.1研究動機 1
1.2研究方法 1
1.3論文組織 2
第二章 背景及相關知識介紹 3
2.1 頻譜使用模式 3
2.1.1交織式(Interweave) 3
2.1.2隱藏式(Underlay) 4
2.1.3重疊式(Overlay) 4
2.2 感知無線電網路架構 5
2.2.1基礎建設型的感知無線電網路 6
2.2.2隨意式感知無線電網路 6
2.3 頻譜管理機制 7
2.3.1頻譜偵測(Spectrum Sensing). 8
2.3.2頻譜決定(Spectrum Decision) 14
2.3.3頻譜分享(Spectrum Sharing) 15
2.3.4頻譜移動(Spectrum Mobility) 16
第三章 無線通道與無線電傳播模型 17
3.1 大尺度傳播模型(Large Scale Propagation Model) 17
3.1.1路徑損耗模型與遮蔽效應(Path Loss Model and Shadowing Effect) 17
3.2 小尺度傳播模型(Small Scale Propagation Model) 18
3.2.1多重路徑傳播效應(Multipath Propagation Effect) 18
3.2.2都普勒延遲(Doppler Spread) 20
3.3 加成性白高斯雜訊 22
3.4系統通道模型 23
第四章 利用空域-頻域-時域特性之多頻段能量偵測演算法 25
4.1系統架構 25
4.1.1訊號模型 26
4.1.2能量偵測模型 26
4.1.3網路模型 30
4.2定位式用戶分群法 36
4.2.1插入權重定位演算法(Weighted Interpolation Positioning Algorithm) 36
4.3分散式共識演算法 38
4.3.1一般平均共識(Average Consensus-Based) 39
4.3.2權重平均共識(Weighted Average Consensus) 43
4.3.3接收機操作特性曲線 45
4.4寬頻頻譜偵測 47
4.4.1以訊雜比為權重的多頻段頻譜偵測機制 47
4.4.2利用空域-頻域-時域特性之多頻段能量偵測演算法 49
4.5模擬結果與討論 51
4.5.1模擬參數 51
4.5.2定位與能量統計量的收斂分析 53
4.5.3定位誤差分析 55
4.5.4偵測效能分析 58
第五章 硬體設計與實現 64
5.1 硬體設計流程 64
5.2硬體架構設計 65
5.2.1功能方塊圖 65
5.2.2部件架構 69
5.3硬體共用與資料流 74
5.3.1資料流 74
5.3.2硬體共用部分 78
5.4硬體實現與結果 78
5.4.1量化分析 78
5.4.2硬體模擬結果 79
第六章 結論 82
參考文獻 83
參考文獻 1.Ian F. Akyildiz, Won-Yeol Lee, Mehmet C. Vuran, Shantidev Mohanty, “Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey,” Computer Networks, Vol 50, pp. 2127–2159, Sep. 2006.
2.Jia-Chi Li, “Power allocation based on limited feedback in DF cooperative and cognitive radio networks,” Institute of Communications Engineering National Sun Yat-sen University Master Thesis, Jul. 2012.
3.古孟霖,寬頻感知無線電及壓縮感知技術簡介, NCP Newsletter, No.36, pp. 14-19, Feb. 2012.
4.Biglieri. Ezio, Goldsmith. Andrea J, Greenstein. Larry J, Mandayam. Narayan B, Poor. H. Vincent, Principles of Cognitive Radio, Cambridge, pp. 41-47, 2012.
5.Ian F. Akyildiz, Won-Yeol Lee, Kaushik R. Chowdhury, “CRAHNs: cognitive radio ad hoc networks,” Ad Hoc Networks, Vol 7, pp. 810–836, Jul. 2009.
6.Sun, Hongjian, et al. “Wideband spectrum sensing for cognitive radio networks: a survey,” IEEE Wireless Communications, Vol 20, pp. 74-81, Apr. 2013.
7.Ian F. Akyildiz, Brandon F. Lo, Ravikumar Balakrishnan, “Cooperative spectrum sensing in cognitive radio networks: a survey,” Physical Communication, Vol 4, pp. 40-62, Mar. 2011.
8.Ghaith Hattab and Mohammed Ibnkahla, “Multiband spectrum access: great promises for future cognitive radio networks,” Proceedings of the IEEE, Vol 102, pp. 282-306, Mar. 2014.
9.Qihui Wu, Guoru Ding, Jinlong Wang, Yu-Dong Yao, “Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: two-dimensional sensing,” IEEE Transactions on Wireless Communications, Vol 12, pp. 516-526, Feb. 2013.
10.Zhi Quan, Shuguang Cui, Ali H. Sayed, H. Vincent Poor, “Optimal multiband joint detection for spectrum sensing in cognitive radio networks,” IEEE Transactions on Signal Processing, Vol 57, pp. 1128-1140, Nov. 2008.
11.Awadhesh Kumar Singh, A.K. Singh, “Range-based primary user localization in cognitive radio networks,” Procedia Computer Science, Vol 93, pp. 199-206, 2016.
12.Pei-hua Lee, “Spatial-temporal spectrum sensing in cognitive radio heterogeneous networks,” National Central University Master Thesis, Jun. 2014
13.Zhiqiang Li, F. Richard Yu, Minyi Huang, “A distributed consensus-based cooperative spectrum-sensing scheme in cognitive radios,” IEEE Transactions on Vehicular Technology, Vol 59, pp. 383-393, Jan. 2010.
14.Wenlin Zhang, et al. “Distributed cooperative spectrum sensing based on weighted average consensus,” in Proc. IEEE Global Telecommun. Conf., Dec. 2011.
15.C.-L. Wang, Y.-W. Hong, Y.-S. Dai, “A decentralized positioning method for wireless sensor networks based on weighted interpolation,” in Proc. 2007 IEEE Int. Conf. on Commun., Jun. 2007.
16.T. S. Rappaport, Wireless Communications - Principles and Practice, Prentice Hall lnc., 2^nd edition, 2002.
17.3GPP TS 36.104 version 13.2.0 Release 13, 2016.
18.A. N. Mody, G. Chouinard, “IEEE 802.22 wireless regional area networks,” IEEE 802.22–10/0073r03, Jun. 2010.
19.Feng Lin, et al. “Cognitive radio network as sensors: low signal-to-noise ratio collaborative spectrum sensing,” in Proc. IEEE International Waveform Diversity & Design Conf., Jan. 2012.
20.T. C. Clancy, “Formalizing the interference temperature model,” Wireless Communication and Mobile Computing, Vol 7, pp. 1077-1086, Nov. 2007.
21.李志鵬等編著,WCDMA 基頻訊號處理與系統設計實務,滄海書局,台中市,民國96年。
22.K. Hossain, B. Champagne, "Wideband spectrum sensing for cognitive radios with correlated subband occupancy," IEEE Signal Processing Letters, Vol 18, No.1, pp. 35-38, Jan. 2011.
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2017-1-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明