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- -1. (5%) What is printed by the following algorithm?
A[1=40,1,2,3,4,5}; 5:::.
int minint 7, int /){ ﬁ‘"

if (i==f) return 4j/|;
else {
if (min(7, m) < min(m+1,)) »=min(i, m); Jﬂ
else =min(m+1,/); 4
printf("%d %d %d \n", i, j, n); return »; }

int 7 int m=(i45)/2; | o

}

void main( ) {
int L;
L=min(0,5);

}

2. Consider the following binary tree

(a) (5 points) Adjust the binary tree above to establish a max heap. Draw the resulting max
heap.

(b) (5 points) Draw the resulting max heap after inserting 4 into the max heap in (a).

(c) (5 points) Draw the resulting max heap after removing 8 from the max heap in (b).
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3. Consider the following binary search tree.

(a) (5 points) Show postorder traversal of the above binary search tree.
(b) (5 points) Please draw the resulting tree after inserting node 5 to the binary search tree

above.

(¢) (10 points) Consider a binary search tree stored in array A and each node’s key value is a
positive integer. For each tree node stored in A[7], its parent should be stored in A[f], where
7=1i/2]. For example, in the binary search tree above, the rightmost tree node (i.e., node 10)
is stored in A[7] and its parent should be stored in A[3] (i.e., node 9). Fill the two blanks in
the following procedure “preorder” (to complete a preorder traversal algorithm).

void main() {
int A[J;

For (i=1; ...; i+1+)
A[i] =—1. /*initial value*/
preorder(1);

void preorder(int i) {
A} ~1 {
printf{“%d”, A[i])
preorder( ;
preorder( );}
b
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4. (10 points) Fill the following two blanks to complete an insertion sort algorithm (which sorts
elements of array A[1:V]).
void insertionSort(int 4[], int N}
{ mtj4
For (=2; j<=N; j++){
t=Alfl;
insert(?, 4, j—1);}
void insert(int 7, int 4{], int )

A0,
While (#<A[1]) {
A=
i~}
A[i+1] =

5. Assume it is a known fact that problem X is NP-complete.
(a) How can we prove that problem Y is also NP-hard by taking advantage of polynomial-time
reduction and the fact? (6%)
(b) If we can prove Y is NP-hard and Y is NP, then we can prove Y'is also NP-complete. How can
we prove that Yis NP7 (6%)

6. The procedure of solving many problems can be represented by trees. Thus, the solving of these
problems becomes a tree searching problem. There are many tree searching algorithms:
breadth-first search, depth-first search, hill climbing and best-first search. Below is the pseudo
code of the breadth-first search algorithm. Please modify the pseudo-code to be the depth-first
search algorithm (6%), the hill climbing algorithm (6%) and the best-first search algorithm (6%).
You should write down the complete algorithm including the input, the output and all steps.

Algorithm: Breadth-First Search Algorithm

Input: the root node » of a tree to search for the goal node g

Qutput: the path from 7 to g as the solution or NIL to indicate failure to find a solution

Step 1: Construct a one-element queue consisting of the root node r

Step 2: Check if the first element in the queue is the goal node g. If so, return the path from »
to g as the solution and stop.

Step 3: Remove the first clement from the queue. Add all descendants of the first element, if
any, to the end of the queue one by one.

Step 4: If the queue is empty, then return NIL and stop. Otherwise, go to Step 2.
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7. Below is the famous Dijkstra Shortest Path Algorithm (DSPA). The input of DSPA is a weighted
directed graph G=(V, E) and a specific source node s, where V is the node set and F is the edge
set and every edge in £ has a positive weight. (Note that the weight of the edge (u, v) is stored in
ew[u, v]). For every node u in V-{s}, DSPA can derive the shortest path from s to z However,
DSPA does not consider node weights. If we now consider node weight and include node weights
in the total weight of every path, we need to extend the original DSAP. Please extend DSAP to.
consider the node weights. Note that we assume the weight of a node « is stored in nw[u] and the
weight of the destination node is not included in the total weight of the path. Note that DSPA uses
indentation to represent the block structure. So please use indentation properly when writing
down the extended DSPA algorithm. You should write down the complete algorithm including
the input, the output and all steps. (10%)

Algorithm: DSPA (Dykstra Shortest Path Algorithm)

Input: G=(V, E), ew, s /G =(V, E) is a graph with edge weights stored in ew, and s is the
source

Qutput: SP //SP is the set of shortest paths from s to all other nodes

1: dist]s]«-0; dist{u] o, for each uts, ueV

2: insert u with key dist[u] into priority queue Q, for each ueV
3: while (0=)

4 u—Extract-Min(Q)

5: for each v adjacent to u

6: if dist[v] > dist{u]+ew[u,v] then
’7.

8

9

0

distv]—dist{u]+ew[u,v]
: pred{vi<u /A’s predecessor in the shortest path is u
. caleulate the shortest path from s to  to add into set SP according to pred[u], for each ueV, uts

i0:

return 5P :
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8. Given a knapsack with capacity C, and » objects o;,...,0, with weights w,,...,w, and values
Vi,...,vm the 0/1 knapsack problem is to determine x, (x; = 0 or 1, 1 </ < n) such that
Yiicicn XeWy < Cand V = Y ien x;v; is maximized. Below is a dynamic programming algorithm
to solve the 0/1 knapsack problem to output V. Please modify the algorithm to solve the subset
sum problem, described as follows. Given a set S of n values vy, vo, ..., vy and a special value C,
the subset sum problem is to determine whether or not there exists a subset S" of § such that
C = Yy,es' v;- You should write down the complete algorithm including the input, the output and
all steps. (10%) |

Algorithm: 0/1 knapsack dynamic prograroming algorithm
Input: knapsack capacity C, n object weights w,,...,w, and n object values v,,...,v,
Output: the maximum value ¥ of all objects that can be kept in the knapsack
1: forw<€¢ 0to Cdo
2: v[0,w] €0
3: fori< ltondo
4. forw € 0 to Cdo
5: if w; < w then
6: v[i, w] € max(v[i-1, w], v; + v[i-1, w-w])
7: else '
8: v[i, w] € v[i-1, w]
9. V& vn (]
10: return V/




