參考文獻 |
曾忠一,2006:
大氣科學中的反問題
,國立編譯館主編,鼎文書局,台北市,
1288 頁。
簡芳菁、洪玉秀,2010: 梅雨季西南氣流氣候平均與個案之數值研究。
大氣科
學
,38,237-267。
邵彥銘,2015: 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量
降雨預報: SoWMEX IOP8 個案分析。國立中央大學大氣物理所碩士論文,
78 頁。
蔡直謙,2014: 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水
即時預報:莫拉克颱風(2009)。國立中央大學大氣物理所博士論文,71 頁。
Aksoy, A., D. C. Dowell and C. Snyder, 2010: A multicase comparative assessment of
the ensemble Kalman filter for assimilation of radar observations. Part II: Short-
range ensemble forecasts. Mon. Wea. Rev., 138, 1273-1292.
Ancell, B. C., C. F. Mass and G. J. Hakim, 2011: Evaluation of surface analyses and
forecasts with a multiscale ensemble Kalman filter in regions of complex terrain.
Mon. Wea. Rev., 139, 2008-2024.
Bishop, C. H., and D. Hodyss, 2007: Flow-adaptive moderation of spurious ensemble
correlations and its use in ensemble-based data assimilation. Quart. J. Roy. Meteor.
Soc., 133, 2029–2044.
Bouttier, F., 1994: A dynamical estimation of forecast error covariances in an
assimilation system. Mon. Wea. Rev., 122, 2376-2390.
Brousseau, P., L. Berre, F. Bouttier and G. Desroziers, 2011: Background-error
covariances for a convective-scale data-assimilation system: AROME-France 3D-
Var. Quart. J. Roy. Meteor. Soc., 137, 409-422.
Caron, J. F. and L. Fillion, 2010: An examination of background error correlations
between mass and rotational wind over precipitation regions. Mon. Wea. Rev., 138,
563-578.
Chung, K. S., W. G. Chang, L. Fillion and M. Tanguay, 2013: Examination of situation-
dependent background error covariances at the convective scale in the context of
the ensemble Kalman filter. Mon. Wea. Rev., 141, 3369-3387.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–
3107.
——, 1996: A multilayer soil temperature model for MM5. Preprints, Sixth PSU/NCAR
Mesoscale Model Users’ Workshop, Boulder, CO, PSU/NCAR, 49–50.
Fabry, F. and J. Z. Sun, 2010: For how long should what data be assimilated for the
mesoscale forecasting of convection and why? Part I: On the propagation of initial
condition errors and their implications for data assimilation. Mon. Wea. Rev., 138,
242-255.
Grell, G. A. and D. Dévényi, 2002: A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques. Geophy. Res.
Lett., 29.
Hacker, J. P. and C. Snyder, 2005: Ensemble Kalman filter assimilation of fixed screen-
height observations in a parameterized PBL. Mon. Wea. Rev., 133, 3260-3275.
Hollingsworth, A., and P. L ö nnberg, 1986: The statistical structure of short-range
forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, 38A, 111–136.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an
explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, 1996: A
system simulation approach to ensemble prediction. Mon. Wea. Rev., 124, 1225–
1242.
——, and S. E. Sand H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman
filter technique. Mon. Wea. Rev., 126, 796-811.
——, and F. Q. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric
data assimilation. Mon. Wea. Rev., 144, 4489-4532.
Hunt, B. R., E. J. Kostelich and I. Szunyogh, 2007: Efficient data assimilation for
spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230,
112-126.
Jacques, D., W. G. Chang, S. J. Baek, T. Milewski, L. Fillion, K. S. Chung and H.
Ritchie, 2017: Developing a convective-Scale EnKF data assimilation system for
the Canadian MEOPAR Project. Mon. Wea. Rev., 145, 1473-1494.
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability.
Cambridge Univ. Press, Cambridge, England, 341 pp.
L ö nnberg, P., and A. Hollingsworth, 1986: The statistical structure of short-range
forecast errors as determined from radiosonde data. Part II : The covariance of
height and wind errors. Tellus, 38A, 137-161.
M é n é trier, B., T. Montmerle, L. Berre and Y. Michel, 2014: Estimation and diagnosis
of heterogeneous flow-dependent background-error covariances at the convective
scale using either large or small ensembles. Quart. J. Roy. Meteor. Soc., 140, 2050-
2061.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997:
Radiative transfer for inhomogeneous atmosphere: RRTM,a validated correlated-
kmodel for the longwave. J. Geophys. Res., 102, 16 663–16 682.
Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface
layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151, 163-187
(in Russian).
Parrish, D. F. and J. C. Derber, 1992: The National Meteorological Centers spectral
statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.
Pereira, M. B., and L. Berre, 2006: The use of an ensemble approach to study the
background error covariances in a global NWP model. Mon. Wea. Rev., 134, 2466–
2489
Poterjoy, J. and F. Q. Zhang, 2011: Dynamics and structure of forecast error covariance
in the core of a developing hurricane. J. Atmos. Sci., 68, 1586-1606.
Pu, Z. X., S. X. Zhang, M. J. Tong and V. Tallapragada, 2016: Influence of the self-
consistent regional ensemble background error covariance on hurricane inner-core
data assimilation with the GSI-based hybrid system for HWRF. J. Atmos. Sci., 73,
4911-4925.
Schwartz, C. S., and Z. Liu, 2014: Convection-permitting forecasts initialized with
continuously cycling limited-area 3DVAR, ensemble Kalman filter, and ‘‘hybrid’’
variational–ensemble data assimilation systems. Mon. Wea. Rev., 142, 716–738.
——, Z. Q. Liu and X. Y. Huang, 2015: Sensitivity of limited-area hybrid variational-
ensemble analyses and forecasts to ensemble perturbation resolution. Mon. Wea.
Rev., 143, 3454-3477.
Tao, W.-K., and Coauthors, 2003: Microphysics, radiation and surface processes in the
Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97–137.
Toth, Z. and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of
perturbations. Bull. Amer. Meteor. Soc., 74, 2317-2330.
Tsai, C. C., S. C. Yang and Y. C. Liou, 2014: Improving quantitative precipitation
nowcasting with a local ensemble transform Kalman filter radar data assimilation
system: observing system simulation experiments. Tellus , 66A, 21804.
Tu, C. C., Y. L. Chen, C. S. Chen, P. L. Lin and P. H. Lin, 2014: A comparison of two
heavy rainfall events during the Terrain-Influenced Monsoon Rainfall Experiment
(TiMREX) 2008. Mon. Wea. Rev., 142, 2436-2463.
——, Y. L. Chen, S. Y. Chen, Y. H. Kuo and P. L. Lin, 2017: Impacts of Including Rain-
Evaporative Cooling in the Initial Conditions on the Prediction of a Coastal Heavy
Rainfall Event during TiMREX. Mon. Wea. Rev., 145, 253-277.
Xu, W. X., E. J. Zipser, Y. L. Chen, C. T. Liu, Y. C. Liou, W. C. Lee and B. J. D. Jou,
2012: An orography-associated extreme rainfall event during TiMREX: Initiation,
storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555-2574.
Yang, S. C., S. H. Chen, S. Y. Chen, C. Y. Huang and C. S. Chen, 2014: Evaluating the
impact of the COSMIC RO bending angle data on predicting the heavy
precipitation episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev.,
142, 4139-4163.
Yeh, H. C. and Y. L. Chen, 2002: The role of offshore convergence on coastal rainfall
during TAMEX IOP 3. Mon. Wea. Rev., 130, 2709-2730.
Zhang, F. Q., 2005: Dynamics and structure of mesoscale error covariance of a winter
cyclone estimated through short-range ensemble forecasts. Mon. Wea. Rev., 133,
2876-2893.
Zhang, S. Q., M. Zupanski, A. Y. Hou, X. Lin and S. H. Cheung, 2013: Assimilation of
precipitation-affected radiances in a cloud-resolving WRF ensemble data assimilation system. Mon. Wea. Rev., 141, 754-772. |